论文标题

关于希尔伯特的第六个问题

On Hilbert's sixth problem

论文作者

Jefferies, B. R. F.

论文摘要

Feynman路径积分现在是量子物理学的标准工具,它们在差异几何形状中的使用会导致新的数学见解。量子现象的逻辑处理似乎需要对路径积分进行持续的数学分析。该受试者在扁平时空中的应用与在拓扑量子场理论中使用路径积分的方式完全不同的事实使该受试者变得复杂。本文给出了历史背景,并在非同性量子力学和具有多项式自我相互作用的标量量子场的背景下进行了一些数学方法。

Feynman path integrals are now a standard tool in quantum physics and their use in differential geometry leads to new mathematical insights. A logical treatment of quantum phenomena seems to require a sustained mathematical analysis of path integrals. The subject is complicated by the fact that their application in flat space-time is quite different from how path integrals are used in, say, topological quantum field theory, where there is no natural notion of time translation. An historical background is given in this paper and a few mathematical approaches to Feynman path integrals in the context of nonrelativistic quantum mechanics and scalar quantum fields with polynomial self-interactions are outlined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源