论文标题
基于机器活动检测的异常检测
Anomalous Sound Detection Based on Machine Activity Detection
论文作者
论文摘要
我们已经开发了一种用于使用辅助任务的机器状态监视的无监督异常检测方法 - 检测目标机何时活跃。首先,我们训练一个模型,该模型通过使用机器活动标签的正常数据来检测机器活动,然后将活动检测误差用作给定声音夹的异常得分,如果我们可以在推理阶段访问地面真相活动标签。如果这些标签不可用,则通过活动检测模型获得的嵌入向量上的异常检测来计算异常得分。解决此辅助任务使该模型能够学习目标机器声音与类似背景噪声之间的差异,从而可以识别目标声音中的小偏差。实验结果表明,所提出的方法通过合奏补充了常规方法的异常检测性能。
We have developed an unsupervised anomalous sound detection method for machine condition monitoring that utilizes an auxiliary task -- detecting when the target machine is active. First, we train a model that detects machine activity by using normal data with machine activity labels and then use the activity-detection error as the anomaly score for a given sound clip if we have access to the ground-truth activity labels in the inference phase. If these labels are not available, the anomaly score is calculated through outlier detection on the embedding vectors obtained by the activity-detection model. Solving this auxiliary task enables the model to learn the difference between the target machine sounds and similar background noise, which makes it possible to identify small deviations in the target sounds. Experimental results showed that the proposed method improves the anomaly-detection performance of the conventional method complementarily by means of an ensemble.