论文标题
2D人姿势估计:一项调查
2D Human Pose Estimation: A Survey
论文作者
论文摘要
人类姿势估计旨在将人类解剖关键点或身体部位定位在输入数据(例如图像,视频或信号)中。它在使机器能够对人类行为有深刻的了解时构成了至关重要的组成部分,并已成为计算机视觉和相关领域的一个显着问题。深度学习技术允许直接从数据中学习特征表示,从而显着推动了人类姿势估计的性能边界。在本文中,我们获得了2D人姿势估计方法的最新成就,并进行了全面的调查。简而言之,现有的方法将他们的努力置于三个方向,即网络架构设计,网络培训的改进和后处理。网络体系结构设计着眼于人类姿势估计模型的体系结构,为关键点识别和本地化提取更强大的功能。网络培训的精致点击了神经网络的训练,并旨在提高模型的代表性能力。后处理进一步纳入了模型不足的抛光策略,以提高按键点检测的性能。这项调查涉及200多项研究贡献,涵盖方法论框架,常见的基准数据集,评估指标和性能比较。我们寻求为研究人员提供对人类姿势估计的更全面和系统的审查,使他们能够获得盛大的全景,并更好地识别未来的方向。
Human pose estimation aims at localizing human anatomical keypoints or body parts in the input data (e.g., images, videos, or signals). It forms a crucial component in enabling machines to have an insightful understanding of the behaviors of humans, and has become a salient problem in computer vision and related fields. Deep learning techniques allow learning feature representations directly from the data, significantly pushing the performance boundary of human pose estimation. In this paper, we reap the recent achievements of 2D human pose estimation methods and present a comprehensive survey. Briefly, existing approaches put their efforts in three directions, namely network architecture design, network training refinement, and post processing. Network architecture design looks at the architecture of human pose estimation models, extracting more robust features for keypoint recognition and localization. Network training refinement tap into the training of neural networks and aims to improve the representational ability of models. Post processing further incorporates model-agnostic polishing strategies to improve the performance of keypoint detection. More than 200 research contributions are involved in this survey, covering methodological frameworks, common benchmark datasets, evaluation metrics, and performance comparisons. We seek to provide researchers with a more comprehensive and systematic review on human pose estimation, allowing them to acquire a grand panorama and better identify future directions.