论文标题

SSR-HEF:人群以多尺度语义炼油和艰苦的示例聚焦计算

SSR-HEF: Crowd Counting with Multi-Scale Semantic Refining and Hard Example Focusing

论文作者

Chen, Jiwei, Wang, Kewei, Su, Wen, Wang, Zengfu

论文摘要

基于密度图的人群计数通常被视为回归任务。深度学习用于学习图像内容和人群密度分布之间的映射。尽管已经取得了巨大的成功,但很难发现一些远离相机的行人。硬性示例的数量通常更大。具有简单欧几里得距离算法的现有方法不加选择地优化了硬且简单的示例,因此通常错误地预测,硬性示例的密度通常是较低甚至零,这会导致较大的计数错误。为了解决这个问题,我们是第一个为人群计数的回归任务提出艰难的示例集中算法(HEF)算法。 HEF算法通过衰减简单示例的贡献使我们的模型迅速关注艰难的例子。然后,将对错误估计的硬示例提出更高的重要性。此外,人群场景中的尺度变化很大,规模注释是劳动密集型且昂贵的。通过提出多尺度语义炼油(SSR)策略,我们模型的下层可以突破深度学习的局限性,以捕获不同尺度的语义特征以充分处理规模变化。我们在六个基准数据集上进行大量实验,以验证所提出的方法。结果表明我们提出的方法优于最新方法。此外,我们设计的模型较小,更快。

Crowd counting based on density maps is generally regarded as a regression task.Deep learning is used to learn the mapping between image content and crowd density distribution. Although great success has been achieved, some pedestrians far away from the camera are difficult to be detected. And the number of hard examples is often larger. Existing methods with simple Euclidean distance algorithm indiscriminately optimize the hard and easy examples so that the densities of hard examples are usually incorrectly predicted to be lower or even zero, which results in large counting errors. To address this problem, we are the first to propose the Hard Example Focusing(HEF) algorithm for the regression task of crowd counting. The HEF algorithm makes our model rapidly focus on hard examples by attenuating the contribution of easy examples.Then higher importance will be given to the hard examples with wrong estimations. Moreover, the scale variations in crowd scenes are large, and the scale annotations are labor-intensive and expensive. By proposing a multi-Scale Semantic Refining (SSR) strategy, lower layers of our model can break through the limitation of deep learning to capture semantic features of different scales to sufficiently deal with the scale variation. We perform extensive experiments on six benchmark datasets to verify the proposed method. Results indicate the superiority of our proposed method over the state-of-the-art methods. Moreover, our designed model is smaller and faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源