论文标题

部分可观测时空混沌系统的无模型预测

Minimal induced subgraphs of the class of 2-connected non-Hamiltonian wheel-free graphs

论文作者

Chaniotis, Aristotelis, Qu, Zishen, Spirkl, Sophie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Given a graph $G$ and a graph property $P$ we say that $G$ is minimal with respect to $P$ if no proper induced subgraph of $G$ has the property $P$. An HC-obstruction is a minimal 2-connected non-Hamiltonian graph. Given a graph $H$, a graph $G$ is $H$-free if $G$ has no induced subgraph isomorphic to $H$. The main motivation for this paper originates from a theorem of Duffus, Gould, and Jacobson (1981), which characterizes all the minimal connected graphs with no Hamiltonian path. In 1998, Brousek characterized all the claw-free HC-obstructions. On a similar note, Chiba and Furuya (2021), characterized all (not only the minimal) 2-connected non-Hamiltonian $\{K_{1,3}, N_{3,1,1}\}$-free graphs. Recently, Cheriyan, Hajebi, and two of us (2022), characterized all triangle-free HC-obstructions and all the HC-obstructions which are split graphs. A wheel is a graph obtained from a cycle by adding a new vertex with at least three neighbors in the cycle. In this paper we characterize all the HC-obstructions which are wheel-free graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源