论文标题

部分可观测时空混沌系统的无模型预测

Sandwiched Renyi Relative Entropy in AdS/CFT

论文作者

Caginalp, Reginald J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We explore the role of sandwiched Renyi relative entropy in AdS/CFT and in finite-dimensional models of holographic quantum error correction. In particular, in the context of operator algebra quantum error correction, we discuss a suitable generalization of sandwiched Renyi relative entropy over finite-dimensional von Neumann algebras. It is then shown that the equality of bulk and boundary sandwiched relative Renyi entropies is equivalent to algebraic encoding of bulk and boundary states, the Ryu-Takayanagi formula, the equality of bulk and boundary relative entropy, and subregion duality. This adds another item to an equivalence theorem between the last four items established in arxiv:1607.03901. We then discuss the sandwiched Renyi relative entropy defined in terms of modular operators, and show that this becomes the definition naturally suited to the finite-dimensional models of holographic quantum error correction. Finally, we explore some numerical calculations of sandwiched Renyi relative entropies for a simple holographic random tensor network in order to obtain a better understanding of corrections to the exact equality of bulk and boundary sandwiched relative Renyi entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源