论文标题
通过人手合作的组装线的强大任务计划
Robust Task Planning for Assembly Lines with Human-Robot Collaboration
论文作者
论文摘要
人机协作(HRC)系统的高效且健壮的任务计划仍然具有挑战性。人力意识的任务计划者需要为机器人和人工工人分配工作,以便他们可以协作以提高时间效率。但是,任务的复杂性和人类合作者的随机性为这种任务计划带来了挑战。为了减少计划问题的复杂性,我们利用了分层任务模型,该模型明确捕获了任务的顺序和并行关系。我们使用Sigma-Mognormal功能对人类运动进行建模,以解释人类引起的不确定性。在运行时间期间采用人类动作模型适应方案,并提供了对人类引起的不确定性进行建模的措施。我们提出了一种基于抽样的方法来估计人类工作完成时间不确定性。接下来,我们提出了一个强大的任务计划者,该计划者通过考虑任务结构和不确定性来将计划问题作为强大的优化问题提出。我们对在电子组装环境中与人工合作的机器人组进行模拟。结果表明,与基线计划者相比,我们提出的计划者可以减少发生人类诱发的不确定性的任务完成时间。
Efficient and robust task planning for a human-robot collaboration (HRC) system remains challenging. The human-aware task planner needs to assign jobs to both robots and human workers so that they can work collaboratively to achieve better time efficiency. However, the complexity of the tasks and the stochastic nature of the human collaborators bring challenges to such task planning. To reduce the complexity of the planning problem, we utilize the hierarchical task model, which explicitly captures the sequential and parallel relationships of the task. We model human movements with the sigma-lognormal functions to account for human-induced uncertainties. A human action model adaptation scheme is applied during run-time, and it provides a measure for modeling the human-induced uncertainties. We propose a sampling-based method to estimate human job completion time uncertainties. Next, we propose a robust task planner, which formulates the planning problem as a robust optimization problem by considering the task structure and the uncertainties. We conduct simulations of a robot arm collaborating with a human worker in an electronics assembly setting. The results show that our proposed planner can reduce task completion time when human-induced uncertainties occur compared to the baseline planner.