论文标题
Sardino:超快速的动态合奏,用于在移动边缘安全视觉传感
Sardino: Ultra-Fast Dynamic Ensemble for Secure Visual Sensing at Mobile Edge
论文作者
论文摘要
对抗性示例攻击危害移动边缘系统,例如采用深层神经网络进行视觉传感的车辆和无人机。本文介绍了{\ em sardino},这是一种主动且动态的防御方法,在运行时更新了推理集合,以针对试图驱除整体并构建相应有效的对抗性示例的自适应对手开发安全性。通过在整体的预测上应用一致性检查和数据融合,Sardino可以检测并阻止对抗性输入。与基于培训的合奏更新相比,我们使用HyperNet实现{\ em 100万次}加速度和人均合奏更新,这给先决条件的剥落攻击带来了最高水平的难度。我们设计了一个运行时计划者,该计划者在保持处理框架速率的同时最大程度地提高了整体尺寸,以支持安全性。除了对抗性示例外,萨迪诺还可以有效地解决分布外输入的问题。本文在抵抗对抗性示例中对萨迪诺的表现进行了广泛的评估,并将其应用于建立实时的汽车交通标志识别系统。实时的道路测试表明,由于前面基于YOLO的交通符号检测器的误报,构建系统在维持帧速率和检测到分布输入方面的有效性。
Adversarial example attack endangers the mobile edge systems such as vehicles and drones that adopt deep neural networks for visual sensing. This paper presents {\em Sardino}, an active and dynamic defense approach that renews the inference ensemble at run time to develop security against the adaptive adversary who tries to exfiltrate the ensemble and construct the corresponding effective adversarial examples. By applying consistency check and data fusion on the ensemble's predictions, Sardino can detect and thwart adversarial inputs. Compared with the training-based ensemble renewal, we use HyperNet to achieve {\em one million times} acceleration and per-frame ensemble renewal that presents the highest level of difficulty to the prerequisite exfiltration attacks. We design a run-time planner that maximizes the ensemble size in favor of security while maintaining the processing frame rate. Beyond adversarial examples, Sardino can also address the issue of out-of-distribution inputs effectively. This paper presents extensive evaluation of Sardino's performance in counteracting adversarial examples and applies it to build a real-time car-borne traffic sign recognition system. Live on-road tests show the built system's effectiveness in maintaining frame rate and detecting out-of-distribution inputs due to the false positives of a preceding YOLO-based traffic sign detector.