论文标题

使用光子尖峰神经元芯片的硬件 - 叠加合作计算基于fabry-pérot激光器的饱和吸收器

Hardware-algorithm collaborative computing with photonic spiking neuron chip based on integrated Fabry-Pérot laser with saturable absorber

论文作者

Xiang, Shuiying, Shi, Yuechun, Guo, Xingxing, Zhang, Yahui, Wang, Hongji, Zheng, Dianzhuang, Song, Ziwei, Han, Yanan, Gao, Shuang, Zhao, Shihao, Gu, Biling, Wang, Hailing, Zhu, Xiaojun, Hou, Lianping, Chen, Xiangfei, Zheng, Wanhua, Ma, Xiaohua, Hao, Yue

论文摘要

光子神经形态计算已成为建立低延迟和节能的非枪neuman计算系统的有前途的途径。光子尖峰神经网络(PSNN)利用脑样时空处理来实现高性能神经形态计算。但是,PSNN的非线性计算仍然是一个重大挑战。在这里,我们首次基于具有饱和吸收剂(FP-SA)的集成的Fabry-Pérot激光器,提出并制造了光子尖峰神经元芯片。实验证明了非线性神经元样动力学,包括时间整合,阈值和尖峰产生,难治性周期和串联性,这提供了不可或缺的基本构建块来构建PSNN硬件。此外,我们提出了时间多形的尖峰编码,以实现远远超出硬件集成规模限制的功能性PSNN。实验证明了具有单个/级联光子尖峰神经元的PSNN,以实现硬件合作计算,显示出具有监督学习算法执行分类任务的能力,这为多层PSNN铺平了解决复杂任务的多层PSNN。

Photonic neuromorphic computing has emerged as a promising avenue toward building a low-latency and energy-efficient non-von-Neuman computing system. Photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. However, the nonlinear computation of PSNN remains a significant challenging. Here, we proposed and fabricated a photonic spiking neuron chip based on an integrated Fabry-Pérot laser with a saturable absorber (FP-SA) for the first time. The nonlinear neuron-like dynamics including temporal integration, threshold and spike generation, refractory period, and cascadability were experimentally demonstrated, which offers an indispensable fundamental building block to construct the PSNN hardware. Furthermore, we proposed time-multiplexed spike encoding to realize functional PSNN far beyond the hardware integration scale limit. PSNNs with single/cascaded photonic spiking neurons were experimentally demonstrated to realize hardware-algorithm collaborative computing, showing capability in performing classification tasks with supervised learning algorithm, which paves the way for multi-layer PSNN for solving complex tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源