论文标题
在两个平衡数字的总和上
On perfect powers that are sum of two balancing numbers
论文作者
论文摘要
令$ b_k $表示平衡序列的$ k^{th} $项。在本文中,我们在变量$(m,n,n,x,q)$ in变量$(m,n,x,q)$ in dioophantine方程的所有正整数解决方案下此外,我们使用正整数$ q \ geq 3 $和$ \ gcd(b_n,b_m)= 1 $来研究二苯胺方程\ [b_n^{3} \ pm b_m^{3} = x^q \] = 1 $。
Let $B_k$ denote the $k^{th}$ term of balancing sequence. In this paper we find all positive integer solutions of the Diophantine equation $B_n+B_m = x^q$ in variables $(m, n,x,q)$ under the assumption $n\equiv m \pmod 2$. Furthermore, we study the Diophantine equation \[B_n^{3}\pm B_m^{3} = x^q\] with positive integer $q\geq 3$ and $\gcd(B_n, B_m) =1$.