论文标题

积极的学习有助于审慎的模型学习预期的任务

Active Learning Helps Pretrained Models Learn the Intended Task

论文作者

Tamkin, Alex, Nguyen, Dat, Deshpande, Salil, Mu, Jesse, Goodman, Noah

论文摘要

由于任务歧义,在部署过程中,模型可能以不可预测的方式失败,而多种行为与所提供的培训数据一致。一个示例是一个在红色正方形和蓝色圆圈上训练的对象分类器:遇到蓝色正方形时,预期的行为是不确定的。我们调查了审慎的模型是否是更好的积极学习者,能够在用户可能试图指定的可能任务之间歧义。有趣的是,我们发现更好的积极学习是预训练过程的新兴特性:使用基于不确定性的主动学习时,预审前的模型需要少5倍,而未经预言的模型则不需要较少的模型。我们发现这些收益来自选择具有消除预期行为的属性的示例的能力,例如稀有产品类别或非典型背景。这些属性在预测的模型的表示空间中与非预言模型相比可以分离得多,这表明了这种行为的可能机制。

Models can fail in unpredictable ways during deployment due to task ambiguity, when multiple behaviors are consistent with the provided training data. An example is an object classifier trained on red squares and blue circles: when encountering blue squares, the intended behavior is undefined. We investigate whether pretrained models are better active learners, capable of disambiguating between the possible tasks a user may be trying to specify. Intriguingly, we find that better active learning is an emergent property of the pretraining process: pretrained models require up to 5 times fewer labels when using uncertainty-based active learning, while non-pretrained models see no or even negative benefit. We find these gains come from an ability to select examples with attributes that disambiguate the intended behavior, such as rare product categories or atypical backgrounds. These attributes are far more linearly separable in pretrained model's representation spaces vs non-pretrained models, suggesting a possible mechanism for this behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源