论文标题
具有复杂系数的一阶标量差分方程的渐近稳定性条件
Conditions for asymptotic stability of first order scalar differential-difference equation with complex coefficients
论文作者
论文摘要
我们研究了标量特性指数多项式,其复杂系数与一阶标量差分方程相关。我们的分析提供了在复杂的开放左半平面中分配根的必要条件,这确保了差分差异方程的渐近稳定性。条件是根据特征指数多项式的复杂系数明确表示的,这使它们易于在应用中使用。我们展示了包括抽象配方中智障PDE的示例。
We investigate a scalar characteristic exponential polynomial with complex coefficients associated with a first order scalar differential-difference equation. Our analysis provides necessary and sufficient conditions for allocation of the roots in the complex open left half-plane what guarantees asymptotic stability of the differential-difference equation. The conditions are expressed explicitly in terms of complex coefficients of the characteristic exponential polynomial, what makes them easy to use in applications. We show examples including those for retarded PDEs in an abstract formulation.