论文标题

边缘增强功能蒸馏网络,用于有效的超分辨率

Edge-enhanced Feature Distillation Network for Efficient Super-Resolution

论文作者

Wang, Yan

论文摘要

随着卷积神经网络中最近的大规模发展,已经提出了许多基于CNN的轻量级图像超分辨率方法,用于在边缘设备上进行实际部署。但是,大多数现有方法都集中在一个特定方面:网络或损失设计,这导致难以最大程度地减少模型大小。为了解决这个问题,我们得出结论,设计,建筑搜索和损失设计,以获得更有效的SR结构。在本文中,我们提出了一个名为EFDN的边缘增强功能蒸馏网络,以保留在约束资源下的高频信息。详细说明,我们基于现有的重新处理方法构建了一个边缘增强卷积块。同时,我们提出了边缘增强的梯度损失,以校准重新分配的路径训练。实验结果表明,我们的边缘增强策略可以保持边缘并显着提高最终恢复质量。代码可在https://github.com/icandle/efdn上找到。

With the recently massive development in convolution neural networks, numerous lightweight CNN-based image super-resolution methods have been proposed for practical deployments on edge devices. However, most existing methods focus on one specific aspect: network or loss design, which leads to the difficulty of minimizing the model size. To address the issue, we conclude block devising, architecture searching, and loss design to obtain a more efficient SR structure. In this paper, we proposed an edge-enhanced feature distillation network, named EFDN, to preserve the high-frequency information under constrained resources. In detail, we build an edge-enhanced convolution block based on the existing reparameterization methods. Meanwhile, we propose edge-enhanced gradient loss to calibrate the reparameterized path training. Experimental results show that our edge-enhanced strategies preserve the edge and significantly improve the final restoration quality. Code is available at https://github.com/icandle/EFDN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源