论文标题

IndiNxnli:评估印度语言的多语言推断

IndicXNLI: Evaluating Multilingual Inference for Indian Languages

论文作者

Aggarwal, Divyanshu, Gupta, Vivek, Kunchukuttan, Anoop

论文摘要

虽然Indic NLP最近就语料库的可用性和预培训模型取得了迅速的进步,但标准NLU任务的基准数据集有限。为此,我们介绍了11个指示语言的NLI数据集IndiNxnli。它是由原始英语XNLI数据集的高质量机器翻译创建的,我们的分析证明了IndiNxnli的质量。通过在此IndionXNLI上对不同的预训练的LMS进行填充,我们就语言模型,语言,多语言,混合语言输入等语言模型的选择的影响进行了分析。这些实验为我们提供了有用的洞察力,以了解多种语言的预培训模型的行为。

While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce IndicXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of IndicXNLI. By finetuning different pre-trained LMs on this IndicXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源