论文标题
基于深度学习的地热储层生产的闭环优化
Deep learning based closed-loop optimization of geothermal reservoir production
论文作者
论文摘要
为了最大程度地利用地热能生产的经济利益,必须优化地热储层管理策略,其中应考虑地质不确定性。在这项工作中,我们提出了一个基于深度学习替代物的闭环优化框架,以对地热储层进行井控制优化。在此框架中,我们构建了一个混合卷积卷发的神经网络替代物,该神经网络结合了卷积神经网络(CNN)和长期短期记忆(LSTM)经常性网络。卷积结构可以提取地质参数字段的空间信息,并且复发结构可以近似序列到序列映射。训练有素的模型可以预测具有不同渗透率场和井控制序列的病例的时变生产反应(速率,温度等)。在闭环优化框架中,基于差异演化(DE)算法的生产优化,以及基于迭代集合(IES)的数据同化(IES),以实现随着生产的收益而实现实时井控制优化和地质参数估计。此外,采用了地质参数估计集合的平均目标函数,以考虑优化过程中的地质不确定性。几种地热储层开发案例旨在测试拟议的生产优化框架的性能。结果表明,所提出的框架可以在地热储层生产过程中实现高效有效的实时优化和数据同化。
To maximize the economic benefits of geothermal energy production, it is essential to optimize geothermal reservoir management strategies, in which geologic uncertainty should be considered. In this work, we propose a closed-loop optimization framework, based on deep learning surrogates, for the well control optimization of geothermal reservoirs. In this framework, we construct a hybrid convolution-recurrent neural network surrogate, which combines the convolution neural network (CNN) and long short-term memory (LSTM) recurrent network. The convolution structure can extract spatial information of geologic parameter fields and the recurrent structure can approximate sequence-to-sequence mapping. The trained model can predict time-varying production responses (rate, temperature, etc.) for cases with different permeability fields and well control sequences. In the closed-loop optimization framework, production optimization based on the differential evolution (DE) algorithm, and data assimilation based on the iterative ensemble smoother (IES), are performed alternately to achieve real-time well control optimization and geologic parameter estimation as the production proceeds. In addition, the averaged objective function over the ensemble of geologic parameter estimations is adopted to consider geologic uncertainty in the optimization process. Several geothermal reservoir development cases are designed to test the performance of the proposed production optimization framework. The results show that the proposed framework can achieve efficient and effective real-time optimization and data assimilation in the geothermal reservoir production process.