论文标题
$ \ mathbb {p}^3 $和$ \ mathbb {p}^4 $的sarkisov链接从折磨的加权爆炸中
Sarkisov links from toric weighted blowups of $\mathbb{P}^3$ and $\mathbb{P}^4$ at a point
论文作者
论文摘要
我们研究了$ \ mathbb {p}^3 $或$ \ mathbb {p}^4 $使用git的变体中的点的曲线加权爆炸发起的sarkisov链接。我们完全分类了这些启动sarkisov链接中的哪个并明确描述链接。此外,如果$ x $是$ \ mathbb {p}^d $的复曲式加权爆炸,那么我们就可以简单地提供一个简单的标准。
We study Sarkisov links initiated by the toric weighted blowup of a point in $\mathbb{P}^3$ or $\mathbb{P}^4$ using variation of GIT. We completely classify which of these initiate Sarkisov links and describe the links explicitly. Moreover, if $X$ is the toric weighted blowup of $\mathbb{P}^d$ at a point, we give a simple criterion in terms of the weights of the blowup that characterises when $X$ is weak Fano.