论文标题
三维球形谐波陷阱中三个相互作用的质量失控物体的能量学
Energetics of three interacting mass-imbalanced bodies in a three-dimensional spherical harmonic trap
论文作者
论文摘要
我们在三维各向同性陷阱中通过接触相互作用考虑了三个颗粒的系统,即三个相同的玻色子或两个相同的费米和杂质。使用两种方法,一种使用无限的波函数基本状态,另一种是封闭形式的波函数,我们计算系统的允许能量特征状态作为相互作用强度的函数,包括强度和弱相互作用的限制。对于费米子情况,这是在保持粒子质量的一般性的同时完成的。我们发现,计算频谱的两种方法在强烈相互作用的极限中非常一致。但是,无限总和方法无法唯一指定埃菲莫夫州的能量,但是在高度准确性的情况下,相互作用的限制在封闭形式方法的边界条件所需的三体参数与求和方法所需的求和截面顺序所需的三体参数之间存在对应关系。该能量和波形的规范构成了热力学变量(例如病毒系数或TAN接触)的基础,或者可以计算动态现象(如淬灭动力学)。
We consider a system of three particles, either three identical bosons or two identical fermions plus an impurity, within a three-dimensional isotropic trap interacting via a contact interaction. Using two approaches, one using an infinite sum of basis states for the wavefunction and the other a closed form wavefunction, we calculate the allowable energy eigenstates of the system as a function of the interaction strength, including the strongly and weakly interacting limits. For the fermionic case this is done while maintaining generality regarding particle masses. We find that the two methods of calculating the spectrum are in excellent agreement in the strongly interacting limit. However the infinite sum approach is unable to uniquely specify the energy of Efimov states, but in the strongly interacting limit there is, to a high degree of accuracy, a correspondence between the three-body parameter required by the boundary condition of the closed form approach and the summation truncation order required by the summation approach. This specification of the energies and wavefunctions forms the basis with which thermodynamic variables such as the virial coefficients or Tan contacts, or dynamic phenomena like quench dynamics can be calculated.