论文标题
从Dedekind-Macneille到Lambek-Isbell的紧密限制和完成
Tight limits and completions from Dedekind-MacNeille to Lambek-Isbell
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
While any infimum in a poset can also be computed as a supremum, and vice versa, categorical limits and colimits do not always approximate each other. If I approach a point from below, and you approach it from above, then we will surely meet if we live in a poset, but we may miss each other in a category. Can we characterize the limits and the colimits that approximate each other, and guarantee that we will meet? Such limits and colimits are called *tight*. Some critically important network applications depend on them. This paper characterizes tight limits and colimits, and describes tight completions, derived by applying the nucleus construction to adjunctions between loose completions. Just as the Dedekind-MacNeille completion of a poset preserves any existing infima and suprema, the tight completion of a category preserves any existing tight limits and colimits and is therefore idempotent.