论文标题
一致性的整数权力总和
Congruences for sums of powers of an integer
论文作者
论文摘要
对于coprime正整数$ q $和$ e $,让$ m(q,e)$表示最低的整数$ t $,这样就有$ t $ p $ q $的总和,这是$ e $的。我们证明了$ m(q.e)$的上限,并调查$ m(q,e)$“大”的情况。我们还特别注意$ e $是主要力量的情况。
For coprime positive integers $q$ and $e$, let $m(q,e)$ denote the least positive integer $t$ such that there exists a sum of $t$ powers of $q$ which is divisible by $e$. We prove an upper bound for $m(q.e)$ and investigate the case where $m(q,e)$ is "large". We also pay special attention to the situation where $e$ is a prime power.