论文标题

胎儿脑组织注释和分割挑战结果

Fetal Brain Tissue Annotation and Segmentation Challenge Results

论文作者

Payette, Kelly, Li, Hongwei, de Dumast, Priscille, Licandro, Roxane, Ji, Hui, Siddiquee, Md Mahfuzur Rahman, Xu, Daguang, Myronenko, Andriy, Liu, Hao, Pei, Yuchen, Wang, Lisheng, Peng, Ying, Xie, Juanying, Zhang, Huiquan, Dong, Guiming, Fu, Hao, Wang, Guotai, Rieu, ZunHyan, Kim, Donghyeon, Kim, Hyun Gi, Karimi, Davood, Gholipour, Ali, Torres, Helena R., Oliveira, Bruno, Vilaça, João L., Lin, Yang, Avisdris, Netanell, Ben-Zvi, Ori, Bashat, Dafna Ben, Fidon, Lucas, Aertsen, Michael, Vercauteren, Tom, Sobotka, Daniel, Langs, Georg, Alenyà, Mireia, Villanueva, Maria Inmaculada, Camara, Oscar, Fadida, Bella Specktor, Joskowicz, Leo, Weibin, Liao, Yi, Lv, Xuesong, Li, Mazher, Moona, Qayyum, Abdul, Puig, Domenec, Kebiri, Hamza, Zhang, Zelin, Xu, Xinyi, Wu, Dan, Liao, KuanLun, Wu, YiXuan, Chen, JinTai, Xu, Yunzhi, Zhao, Li, Vasung, Lana, Menze, Bjoern, Cuadra, Meritxell Bach, Jakab, Andras

论文摘要

Utero胎儿MRI正在成为对发展中大脑的诊断和分析的重要工具。在研究和临床背景下对产前神经发育的定量分析的自动分割是对胎儿大脑的自动分割。但是,脑结构的手动分割是耗时的,容易出现错误和观察者间的变异性。因此,我们在2021年组织了胎儿组织注释(FETA)挑战,以鼓励在国际水平上发展自动分割算法。挑战利用了Feta数据集,这是胎儿脑MRI重建的开放数据集,分为七个不同的组织(外脑脊髓液,灰质,白质,心室,小脑,脑干,深灰质)。 20个国际团队参加了这一挑战,总共提交了21种评估算法。在本文中,我们从技术和临床角度详细分析了结果。所有参与者都依赖于深度学习方法,主要是U-NET,并且网络体系结构,优化以及图像预处理和后处理中存在一些可变性。大多数团队都使用现有的医学成像深度学习框架。提交之间的主要差异是在训练过程中进行的微调以及执行的特定预处理和后处理步骤。挑战结果表明,几乎所有提交的表现都类似。前五支球队中有四个使用合奏学习方法。但是,一个团队的算法的性能优于其他提交,由不对称的U-NET网络体系结构组成。本文为未来的自动多组织分段算法提供了对子宫内大脑发展的未来自动多组织分段算法的第一个基准。

In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源