论文标题
有效的无线联合学习与部分模型聚合
Efficient Wireless Federated Learning with Partial Model Aggregation
论文作者
论文摘要
跨设备的数据异质性以及有限的通信资源,例如带宽和能源,是无线联合学习(FL)的两个主要瓶颈。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架。这种方法汇总了在参数服务器上负责特征提取的神经网络的下层,同时保持上层层,负责复杂的模式识别,在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下得出了框架的收敛界限,以揭示数据大小在学习性能中的作用。在此基础上,我们通过共同优化设备调度,带宽分配,计算和通信时间分割策略在Lyapunov优化的帮助下,最大化计划的数据大小,以最大程度地减少全局损耗函数。我们的分析表明,当PMA-FL的通信和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来求解最佳带宽分配策略,并使用集合扩展算法来解决设备调度策略。与基准方案相比,所提出的PMA-FL在两个具有异质数据分布设置的典型数据集上提高了3.13 \%和11.8 \%的精度,即Minist和CIFAR-10。此外,提议的联合动态设备调度和资源管理方法的精度比考虑的基准略高,但它们提供了令人满意的能量和减少时间:29 \%能量或20 \%的时间缩短MNIST;和25 \%的能量或12.5 \%降低CIFAR-10。
The data heterogeneity across devices and the limited communication resources, e.g., bandwidth and energy, are two of the main bottlenecks for wireless federated learning (FL). To tackle these challenges, we first devise a novel FL framework with partial model aggregation (PMA). This approach aggregates the lower layers of neural networks, responsible for feature extraction, at the parameter server while keeping the upper layers, responsible for complex pattern recognition, at devices for personalization. The proposed PMA-FL is able to address the data heterogeneity and reduce the transmitted information in wireless channels. Then, we derive a convergence bound of the framework under a non-convex loss function setting to reveal the role of unbalanced data size in the learning performance. On this basis, we maximize the scheduled data size to minimize the global loss function through jointly optimize the device scheduling, bandwidth allocation, computation and communication time division policies with the assistance of Lyapunov optimization. Our analysis reveals that the optimal time division is achieved when the communication and computation parts of PMA-FL have the same power. We also develop a bisection method to solve the optimal bandwidth allocation policy and use the set expansion algorithm to address the device scheduling policy. Compared with the benchmark schemes, the proposed PMA-FL improves 3.13\% and 11.8\% accuracy on two typical datasets with heterogeneous data distribution settings, i.e., MINIST and CIFAR-10, respectively. In addition, the proposed joint dynamic device scheduling and resource management approach achieve slightly higher accuracy than the considered benchmarks, but they provide a satisfactory energy and time reduction: 29\% energy or 20\% time reduction on the MNIST; and 25\% energy or 12.5\% time reduction on the CIFAR-10.