论文标题

Multipathgan:结构使用无监督的多域对抗网络保存染色归一化,感知损失

MultiPathGAN: Structure Preserving Stain Normalization using Unsupervised Multi-domain Adversarial Network with Perception Loss

论文作者

Nazki, Haseeb, Arandjelović, Ognjen, Um, InHwa, Harrison, David

论文摘要

组织病理学依赖于微观组织图像的分析来诊断疾病。组织制备的关键部分正在染色,从而使染料用于使显着组织成分更具区分。但是,实验室协议和扫描设备的差异导致相应图像的显着混杂外观变化。这种差异增加了人类错误和评估者间的变异性,并阻碍了自动或半自动方法的性能。在本文中,我们引入了一个无监督的对抗网络,以在多个数据采集域中翻译(因此使)整个幻灯片图像。我们的主要贡献是:(i)一种对抗性结构,该构建结构使用信息流分支来通过单个发电机 - 歧视器网络学习多个领域,该信息流提供了优化的感知损失,以及(ii)在训练过程中包含一个附加的特征提取网络,以指导转换网络在组织图像中保持所有结构特征。我们:(i)首先证明了提出方法对120例肾脏癌病例的H \&e幻灯片的有效性,以及(ii)在更一般的问题上显示了该方法的好处,例如基于灵活照明的自然图像增强和光源适应。

Histopathology relies on the analysis of microscopic tissue images to diagnose disease. A crucial part of tissue preparation is staining whereby a dye is used to make the salient tissue components more distinguishable. However, differences in laboratory protocols and scanning devices result in significant confounding appearance variation in the corresponding images. This variation increases both human error and the inter-rater variability, as well as hinders the performance of automatic or semi-automatic methods. In the present paper we introduce an unsupervised adversarial network to translate (and hence normalize) whole slide images across multiple data acquisition domains. Our key contributions are: (i) an adversarial architecture which learns across multiple domains with a single generator-discriminator network using an information flow branch which optimizes for perceptual loss, and (ii) the inclusion of an additional feature extraction network during training which guides the transformation network to keep all the structural features in the tissue image intact. We: (i) demonstrate the effectiveness of the proposed method firstly on H\&E slides of 120 cases of kidney cancer, as well as (ii) show the benefits of the approach on more general problems, such as flexible illumination based natural image enhancement and light source adaptation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源