论文标题
SIMMC:简单掩盖的对比度学习无监督人的骨骼表示形式
SimMC: Simple Masked Contrastive Learning of Skeleton Representations for Unsupervised Person Re-Identification
论文作者
论文摘要
基于骨架的人的重新识别(RE-ID)的最新进展通过手工制作的骨骼描述符或骨骼表示,并以深度学习范式的方式获得了令人印象深刻的表现。但是,它们通常需要骨骼预制和标签信息进行培训,这导致这些方法的适用性有限。在本文中,我们专注于无监督的基于骨架的人,并提出一个通用的简单掩盖对比度学习(SIMMC)框架,以从无标记的3D骨架中学习有效的表示形式。具体而言,要在每个骨架序列中充分利用骨骼特征,我们首先设计了一个掩盖的原型对比度学习(MPC)方案,以聚集来自从原始序列随机掩盖的不同子序列的最典型骨骼特征(骨骼原型),并使用骨架特征与任何差异性的界面之间的固有相似性。然后,考虑到同一顺序中不同的子序列通常由于运动连续性的性质而具有很强的相关性,我们提出了掩盖的序列内对比度学习(MIC)以捕获子序列之间的序列模式一致性,以鼓励对人重新ID学习更有效的骨架表示。广泛的实验验证了所提出的SIMMC优于大多数基于最新的骨架方法。我们进一步显示了其在增强现有模型性能方面的可扩展性和效率。我们的代码可在https://github.com/kali-hac/simmc上找到。
Recent advances in skeleton-based person re-identification (re-ID) obtain impressive performance via either hand-crafted skeleton descriptors or skeleton representation learning with deep learning paradigms. However, they typically require skeletal pre-modeling and label information for training, which leads to limited applicability of these methods. In this paper, we focus on unsupervised skeleton-based person re-ID, and present a generic Simple Masked Contrastive learning (SimMC) framework to learn effective representations from unlabeled 3D skeletons for person re-ID. Specifically, to fully exploit skeleton features within each skeleton sequence, we first devise a masked prototype contrastive learning (MPC) scheme to cluster the most typical skeleton features (skeleton prototypes) from different subsequences randomly masked from raw sequences, and contrast the inherent similarity between skeleton features and different prototypes to learn discriminative skeleton representations without using any label. Then, considering that different subsequences within the same sequence usually enjoy strong correlations due to the nature of motion continuity, we propose the masked intra-sequence contrastive learning (MIC) to capture intra-sequence pattern consistency between subsequences, so as to encourage learning more effective skeleton representations for person re-ID. Extensive experiments validate that the proposed SimMC outperforms most state-of-the-art skeleton-based methods. We further show its scalability and efficiency in enhancing the performance of existing models. Our codes are available at https://github.com/Kali-Hac/SimMC.