论文标题

途径均匀图的一些足够条件

Some sufficient conditions for path-factor uniform graphs

论文作者

Zhou, Sizhong, Sun, Zhiren, Liu, Hongxia

论文摘要

对于连接图的集合$ \ MATHCAL {H} $,如果$ h $的每个组件均为$ h $的每个组成部分,则称为$ g $ $ g $的子图$ h $ of $ g $。图形$ g $称为$ \ MATHCAL {H} $ - 因子均匀图,如果对于任何两个边缘$ e_1 $和$ e_2 $的$ g $,$ g $,$ g $具有$ \ mathcal {h} $ - 覆盖$ e_1 $的因子,不包括$ e_2 $。让$ \ Mathcal {H} $中的每个组件为至少$ d $顶点的路径,其中$ d \ geq2 $是整数。 Then an $\mathcal{H}$-factor and an $\mathcal{H}$-factor uniform graph are called a $P_{\geq d}$-factor and a $P_{\geq d}$-factor uniform graph, respectively.在本文中,我们验证(\ romannumeral1)2-边缘连接的图$ g $是$ p _ {\ geq3} $ - 因子均匀图,如果$δ(g)> \ frac> \ frac {α(g)+4} +4} {2} {2} $; (\ romannumeral2)a $(k+2)$ - 连接的图形$ n $,带有$ n \ geq5k+3- \ 3- \ frac {3} {5γ-1} $是$ p _ {\ geq3} $ - $ n_g(a)$ g $ g $ g $ g $ g $ g+g $ g $ g+g y $ g+k+k+2 $ g+geq3} $ - $ | a | = \lfloorγ(2k+1)\ rfloor $,其中$ k $是一个正整数,$γ$是一个真实的数字,$ \ frac {1} {3} {3} \leqγ\ leq1 $。

For a set $\mathcal{H}$ of connected graphs, a spanning subgraph $H$ of $G$ is called an $\mathcal{H}$-factor of $G$ if each component of $H$ is isomorphic to an element of $\mathcal{H}$. A graph $G$ is called an $\mathcal{H}$-factor uniform graph if for any two edges $e_1$ and $e_2$ of $G$, $G$ has an $\mathcal{H}$-factor covering $e_1$ and excluding $e_2$. Let each component in $\mathcal{H}$ be a path with at least $d$ vertices, where $d\geq2$ is an integer. Then an $\mathcal{H}$-factor and an $\mathcal{H}$-factor uniform graph are called a $P_{\geq d}$-factor and a $P_{\geq d}$-factor uniform graph, respectively. In this article, we verify that (\romannumeral1) a 2-edge-connected graph $G$ is a $P_{\geq3}$-factor uniform graph if $δ(G)>\frac{α(G)+4}{2}$; (\romannumeral2) a $(k+2)$-connected graph $G$ of order $n$ with $n\geq5k+3-\frac{3}{5γ-1}$ is a $P_{\geq3}$-factor uniform graph if $|N_G(A)|>γ(n-3k-2)+k+2$ for any independent set $A$ of $G$ with $|A|=\lfloorγ(2k+1)\rfloor$, where $k$ is a positive integer and $γ$ is a real number with $\frac{1}{3}\leqγ\leq1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源