论文标题
基于全球和本地信息的遥感跨模式文本图像检索
Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and Local Information
论文作者
论文摘要
跨模式遥感文本图像检索(RSCTIR)最近成为紧急研究热点,因为它可以在遥感(RS)图像上启用快速,灵活的信息提取。但是,当前的RSCTIR方法主要集中于RS图像的全局特征,这导致忽略反映目标关系和显着性的本地特征。在本文中,我们首先提出了一个基于全局和本地信息(GALR)的新型RSCTIR框架,并设计了多层信息动态融合(MIDF)模块,以有效地整合不同级别的特征。 MIDF利用本地信息来纠正全局信息,利用全球信息来补充本地信息,并使用两者的动态添加来生成突出的视觉表示。为了减轻图形卷积网络(GCN)上冗余目标的压力,并在建模局部特征期间提高模型对显着实例的关注,设计了含糊的表示矩阵和增强的邻接矩阵(DREA),以帮助GCN帮助GCN产生出色的本地代表。 DREA不仅过滤具有高相似性的冗余功能,而且还通过增强突出物体的特征获得了更强大的本地功能。最后,为了在推断期间充分利用相似性矩阵中的信息,我们提出了一个插件多变量rerank(MR)算法。该算法利用检索结果的K最近的邻居进行反向搜索,并通过结合双向检索的多个组件来改善性能。公共数据集上的广泛实验强烈证明了GALR方法在RSCTIR任务上的最新性能。 GALR方法的代码,算法先生和相应的文件已在https://github.com/xiaoyuan1996/galr上提供。
Cross-modal remote sensing text-image retrieval (RSCTIR) has recently become an urgent research hotspot due to its ability of enabling fast and flexible information extraction on remote sensing (RS) images. However, current RSCTIR methods mainly focus on global features of RS images, which leads to the neglect of local features that reflect target relationships and saliency. In this article, we first propose a novel RSCTIR framework based on global and local information (GaLR), and design a multi-level information dynamic fusion (MIDF) module to efficaciously integrate features of different levels. MIDF leverages local information to correct global information, utilizes global information to supplement local information, and uses the dynamic addition of the two to generate prominent visual representation. To alleviate the pressure of the redundant targets on the graph convolution network (GCN) and to improve the model s attention on salient instances during modeling local features, the de-noised representation matrix and the enhanced adjacency matrix (DREA) are devised to assist GCN in producing superior local representations. DREA not only filters out redundant features with high similarity, but also obtains more powerful local features by enhancing the features of prominent objects. Finally, to make full use of the information in the similarity matrix during inference, we come up with a plug-and-play multivariate rerank (MR) algorithm. The algorithm utilizes the k nearest neighbors of the retrieval results to perform a reverse search, and improves the performance by combining multiple components of bidirectional retrieval. Extensive experiments on public datasets strongly demonstrate the state-of-the-art performance of GaLR methods on the RSCTIR task. The code of GaLR method, MR algorithm, and corresponding files have been made available at https://github.com/xiaoyuan1996/GaLR .