论文标题
MAP-SNN:以多样性,适应性和可塑性为生的峰值活动成生物学上的尖峰神经网络
MAP-SNN: Mapping Spike Activities with Multiplicity, Adaptability, and Plasticity into Bio-Plausible Spiking Neural Networks
论文作者
论文摘要
尖峰神经网络(SNN)被认为是模仿人脑的基本机制,在生物学上更现实和有效。最近,利用深度学习框架的基于反向传播(BP)的SNN学习算法取得了良好的性能。但是,在那些基于BP的算法中,生物解剖性部分被部分忽略。倾向于基于BP的生物学成分,我们考虑了建模峰值活动中的三种特性:多样性,适应性和可塑性(地图)。在多样性方面,我们提出了一个多尖峰模式(MSP),具有多个尖峰传输,以增强离散时间材料的模型鲁棒性。为了实现适应性,我们在MSP下采用尖峰频率适应(SFA)来降低峰值活动以提高效率。对于可塑性,我们提出了一个可训练的卷积突触,该突触模拟了尖峰响应电流,以增强尖峰神经元的多样性,以提取时间特征。拟议的SNN模型在神经形态数据集上实现了竞争性能:N-MNIST和SHD。此外,实验结果表明,提出的三个方面对于迭代鲁棒性,尖峰效率和峰值活动的时间特征提取能力很重要。总而言之,这项工作提出了一个可行的计划,该方案针对具有MAP的生物启发的尖峰活动,提供了一种新的神经形态学观点,将生物学特征嵌入到尖峰神经网络中。
Spiking Neural Network (SNN) is considered more biologically realistic and power-efficient as it imitates the fundamental mechanism of the human brain. Recently, backpropagation (BP) based SNN learning algorithms that utilize deep learning frameworks have achieved good performance. However, bio-interpretability is partially neglected in those BP-based algorithms. Toward bio-plausible BP-based SNNs, we consider three properties in modeling spike activities: Multiplicity, Adaptability, and Plasticity (MAP). In terms of multiplicity, we propose a Multiple-Spike Pattern (MSP) with multiple spike transmission to strengthen model robustness in discrete time-iteration. To realize adaptability, we adopt Spike Frequency Adaption (SFA) under MSP to decrease spike activities for improved efficiency. For plasticity, we propose a trainable convolutional synapse that models spike response current to enhance the diversity of spiking neurons for temporal feature extraction. The proposed SNN model achieves competitive performances on neuromorphic datasets: N-MNIST and SHD. Furthermore, experimental results demonstrate that the proposed three aspects are significant to iterative robustness, spike efficiency, and temporal feature extraction capability of spike activities. In summary, this work proposes a feasible scheme for bio-inspired spike activities with MAP, offering a new neuromorphic perspective to embed biological characteristics into spiking neural networks.