论文标题

使用来自自闭症患者的POI推荐系统中的基于位置服务的消费者反馈

Using consumer feedback from location-based services in PoI recommender systems for people with autism

论文作者

Mauro, Noemi, Ardissono, Liliana, Cocomazzi, Stefano, Cena, Federica

论文摘要

当向患有自闭症谱系障碍的人提出兴趣点(POI)时,我们必须考虑到他们对噪音,亮度和其他影响他们感知位置的方式具有特殊的感觉厌恶。因此,推荐系统必须处理这些方面。但是,关于POI的感觉数据的检索是一个真正的挑战,因为大多数地理信息服务器无法提供此数据。此外,临时众包运动不能保证涵盖大型地理区域并缺乏可持续性。因此,我们研究了有关基于位置的服务收集的消费者反馈的感觉数据的提取,人们会自发地发布来自世界各地的评论。具体而言,我们为从有关POI的评论中提取感觉数据的模型及其在推荐系统中的集成,以通过考虑用户偏好和兼容性信息来预测项目评分。我们通过将自闭症和神经型人的人整合到多种推荐算法中测试了我们的方法。在测试中,我们使用了一个在众包活动中构建的数据集,另一个是从TripAdvisor评论中提取的数据集。结果表明,使用TripAdvisor数据时,该算法具有最高的精度和排名能力。此外,通过共同使用这两个数据集,该算法进一步提高了其性能。这些结果鼓励将消费者反馈用作有关包容性推荐系统开发的位置的可靠信息来源。

When suggesting Points of Interest (PoIs) to people with autism spectrum disorders, we must take into account that they have idiosyncratic sensory aversions to noise, brightness and other features that influence the way they perceive places. Therefore, recommender systems must deal with these aspects. However, the retrieval of sensory data about PoIs is a real challenge because most geographical information servers fail to provide this data. Moreover, ad-hoc crowdsourcing campaigns do not guarantee to cover large geographical areas and lack sustainability. Thus, we investigate the extraction of sensory data about places from the consumer feedback collected by location-based services, on which people spontaneously post reviews from all over the world. Specifically, we propose a model for the extraction of sensory data from the reviews about PoIs, and its integration in recommender systems to predict item ratings by considering both user preferences and compatibility information. We tested our approach with autistic and neurotypical people by integrating it into diverse recommendation algorithms. For the test, we used a dataset built in a crowdsourcing campaign and another one extracted from TripAdvisor reviews. The results show that the algorithms obtain the highest accuracy and ranking capability when using TripAdvisor data. Moreover, by jointly using these two datasets, the algorithms further improve their performance. These results encourage the use of consumer feedback as a reliable source of information about places in the development of inclusive recommender systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源