论文标题
在时间分辨流数据中混音的解决方案
Solutions to aliasing in time-resolved flow data
论文作者
论文摘要
避免通过高保真模拟获得的时间分辨流数据的混溶,同时将计算和存储成本保持在可接受的水平,这通常是一个挑战。公认的解决方案,例如提高采样率或低通滤波以减少别名的解决方案对于大型数据集而言是昂贵的。本文提供了一组替代策略,用于识别和缓解与大型数据集适用的混叠。我们展示了可以直接从管理方程中获得的时间衍生数据,可用于检测混叠和将其从数据中删除错误的问题转变为一个拟定的问题,从而得出对真实频谱的预测。同样,我们展示了如何使用空间过滤来删除对流系统的混叠。我们还提出了策略,以防止生成数据库时的混叠,包括用于计算分解框架内出现的非线性强迫术语的方法。使用非线性金茨堡 - Landau模型和大型模拟(LES)数据证明了这些方法。
Avoiding aliasing in time-resolved flow data obtained through high fidelity simulations while keeping the computational and storage costs at acceptable levels is often a challenge. Well-established solutions such as increasing the sampling rate or low-pass filtering to reduce aliasing can be prohibitively expensive for large data sets. This paper provides a set of alternative strategies for identifying and mitigating aliasing that are applicable even to large data sets. We show how time-derivative data, which can be obtained directly from the governing equations, can be used to detect aliasing and to turn the ill-posed problem of removing aliasing from data into a well-posed problem, yielding a prediction of the true spectrum. Similarly, we show how spatial filtering can be used to remove aliasing for convective systems. We also propose strategies to prevent aliasing when generating a database, including a method tailored for computing nonlinear forcing terms that arise within the resolvent framework. These methods are demonstrated using a non-linear Ginzburg-Landau model and large-eddy simulation (LES) data for a subsonic turbulent jet.