论文标题

信息传播中的互动

Interactions in Information Spread

论文作者

Poux-Médard, Gaël, Velcin, Julien, Loudcher, Sabine

论文摘要

互联网上的大量数据流。当用户决定帮助传播一条信息(通过转发,喜欢,发布内容)时,大多数研究工作都假设她根据信息的内容,出版日期,用户在网络中的位置,使用的平台,所使用的平台等等。这个想法是,用户的选择部分由她接触到的以前的信息来调节。在本文档中,我们回顾了有关互动建模的作品,并强调了使他们的研究复杂化的相互作用的几个方面。然后,我们提出了一种似乎适合回答这些挑战和细节的方法,并详细介绍了基于它的专用互动模型。我们显示我们的方法比现有方法更适合问题,并为未来的作品提供了潜在客户。在整个文本中,我们都表明,考虑到现实世界数据集中的信息交互过程的理解,并认为在建模传播过程时,不应忽略信息传播的这一方面。

Large quantities of data flow on the internet. When a user decides to help the spread of a piece of information (by retweeting, liking, posting content), most research works assumes she does so according to information's content, publication date, the user's position in the network, the platform used, etc. However, there is another aspect that has received little attention in the literature: the information interaction. The idea is that a user's choice is partly conditioned by the previous pieces of information she has been exposed to. In this document, we review the works done on interaction modeling and underline several aspects of interactions that complicate their study. Then, we present an approach seemingly fit to answer those challenges and detail a dedicated interaction model based on it. We show our approach fits the problem better than existing methods, and present leads for future works. Throughout the text, we show that taking interactions into account improves our comprehension of information interaction processes in real-world datasets, and argue that this aspect of information spread is should not be neglected when modeling spreading processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源