论文标题

从预训练的模型中探索脚本知识

Probing Script Knowledge from Pre-Trained Models

论文作者

Jin, Zijian, Zhang, Xingyu, Yu, Mo, Huang, Lifu

论文摘要

脚本知识对于人类了解世界上广泛的日常任务和常规活动至关重要。最近,研究人员探索了大规模的预训练的语言模型(PLM),以执行各种脚本相关的任务,例如故事产生,事件的时间顺序,未来事件预测等。但是,关于PLM的捕获脚本知识的了解,它仍然没有很好地研究。为了回答这个问题,我们设计了三个探测任务:包容性的子事件选择,开始子事件选择和时间订购,以调查有或不进行微调的PLM的功能。可以进一步使用三个探测任务来自动诱导每个主事件的脚本,并给定所有可能的子事件。以伯特为案例研究,通过分析其在脚本归纳方面的性能以及每个单独的探测任务,我们得出结论,子事件之间的定型时间知识在BERT中得到了很好的捕获,但是几乎没有编码包容性或开始的子事实知识。

Script knowledge is critical for humans to understand the broad daily tasks and routine activities in the world. Recently researchers have explored the large-scale pre-trained language models (PLMs) to perform various script related tasks, such as story generation, temporal ordering of event, future event prediction and so on. However, it's still not well studied in terms of how well the PLMs capture the script knowledge. To answer this question, we design three probing tasks: inclusive sub-event selection, starting sub-event selection and temporal ordering to investigate the capabilities of PLMs with and without fine-tuning. The three probing tasks can be further used to automatically induce a script for each main event given all the possible sub-events. Taking BERT as a case study, by analyzing its performance on script induction as well as each individual probing task, we conclude that the stereotypical temporal knowledge among the sub-events is well captured in BERT, however the inclusive or starting sub-event knowledge is barely encoded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源