论文标题
偏置(压力)检验公平算法的沙盒工具
A Sandbox Tool to Bias(Stress)-Test Fairness Algorithms
论文作者
论文摘要
公平的ML研究人员提出了广泛的算法“公平增强”疗法,这是由于减少ML预测不公平的不公平性而越来越重要的动机。但是,大多数现有的算法对观察到的不公平的来源不可知。结果,文献目前缺乏指导框架来指定每种算法干预措施可能减轻不公平原因的基础原因的条件。为了缩小这一差距,我们仔细检查了导致观察不公平的基本偏见(例如,在培训数据或设计选择中)。我们提出了概念性思想,也是第一个偏置注射沙盒工具的实施,以研究各种偏见的公平后果,并评估在存在特定类型偏见的情况下算法补救措施的有效性。我们将此过程称为算法干预措施的偏差(压力)测试。与现有工具包不同,我们的工具包提供了一个受控的环境,以反作用地注入ML管道中的偏见。这种程式化的设置提供了测试公平干预措施超出观察数据和无偏见的基准的独特功能。特别是,我们可以通过将偏见设置干预后的预测与无偏见的制度中的真实标签进行比较,在任何偏置注入之前,都可以测试给定的补救措施是否可以减轻注射偏见。我们通过有关合成数据的概念验证案例研究来说明我们的工具包的实用性。我们的经验分析展示了可以通过我们的模拟获得的见解类型。
Motivated by the growing importance of reducing unfairness in ML predictions, Fair-ML researchers have presented an extensive suite of algorithmic 'fairness-enhancing' remedies. Most existing algorithms, however, are agnostic to the sources of the observed unfairness. As a result, the literature currently lacks guiding frameworks to specify conditions under which each algorithmic intervention can potentially alleviate the underpinning cause of unfairness. To close this gap, we scrutinize the underlying biases (e.g., in the training data or design choices) that cause observational unfairness. We present the conceptual idea and a first implementation of a bias-injection sandbox tool to investigate fairness consequences of various biases and assess the effectiveness of algorithmic remedies in the presence of specific types of bias. We call this process the bias(stress)-testing of algorithmic interventions. Unlike existing toolkits, ours provides a controlled environment to counterfactually inject biases in the ML pipeline. This stylized setup offers the distinct capability of testing fairness interventions beyond observational data and against an unbiased benchmark. In particular, we can test whether a given remedy can alleviate the injected bias by comparing the predictions resulting after the intervention in the biased setting with true labels in the unbiased regime-that is, before any bias injection. We illustrate the utility of our toolkit via a proof-of-concept case study on synthetic data. Our empirical analysis showcases the type of insights that can be obtained through our simulations.