论文标题
Notip:非参数的真实发现比例控制脑成像
Notip: Non-parametric True Discovery Proportion control for brain imaging
论文作者
论文摘要
群集级推理程序被广泛用于大脑映射。这些方法比较了通过使用随机场理论或排列计算的全球无效假设下的阈值大脑图获得的簇的大小。但是,通过这种推论获得的保证 - 即至少在集群中真正激活了一个体素 - 就其信号的强度而言并不具有信息。因此,需要方法来评估簇中的信号量。然而,这样的方法必须考虑到基于数据定义簇的定义,从而在推理方案中产生循环。这促使使用事后估计值,该估计值允许对簇中激活体素的比例统计有效估计。在fMRI数据的背景下,[25]中介绍的全分辨率推理框架提供了激活体素比例的事后估计值。但是,此方法依赖于参数阈值家族,从而导致保守推断。在本文中,我们利用随机化方法适应数据特征并获得更严格的错误发现控制。对于非参数真实发现比例控制,我们获得了Notip:一种强大的,非参数方法,可在数据衍生的簇中以激活的体素的比例产生统计上有效的保证。数值实验表明,与36个fMRI数据集上的最新方法相比,检测数量的增长很大。还讨论了所提出的方法带来的好处的条件。
Cluster-level inference procedures are widely used for brain mapping. These methods compare the size of clusters obtained by thresholding brain maps to an upper bound under the global null hypothesis, computed using Random Field Theory or permutations. However, the guarantees obtained by this type of inference - i.e. at least one voxel is truly activated in the cluster - are not informative with regards to the strength of the signal therein. There is thus a need for methods to assess the amount of signal within clusters; yet such methods have to take into account that clusters are defined based on the data, which creates circularity in the inference scheme. This has motivated the use of post hoc estimates that allow statistically valid estimation of the proportion of activated voxels in clusters. In the context of fMRI data, the All-Resolutions Inference framework introduced in [25] provides post hoc estimates of the proportion of activated voxels. However, this method relies on parametric threshold families, which results in conservative inference. In this paper, we leverage randomization methods to adapt to data characteristics and obtain tighter false discovery control. We obtain Notip, for Non-parametric True Discovery Proportion control: a powerful, non-parametric method that yields statistically valid guarantees on the proportion of activated voxels in data-derived clusters. Numerical experiments demonstrate substantial gains in number of detections compared with state-of-the-art methods on 36 fMRI datasets. The conditions under which the proposed method brings benefits are also discussed.