论文标题
可解释的ICD编码的分层标签注意力变压器模型
Hierarchical Label-wise Attention Transformer Model for Explainable ICD Coding
论文作者
论文摘要
国际疾病分类(ICD)编码在系统地分类发病率和死亡率数据中起着重要作用。在这项研究中,我们提出了层次标签的注意力变压器模型(HILAT),以从临床文档中对ICD代码进行可解释的预测。 HILAT首先微调验证的变压器模型,以代表临床文档的令牌。随后,我们采用了两级分层标签的注意力机制,从而创建特定于标签的文档表示。这些表示形式反过来又由前进神经网络使用来预测是否将特定的ICD代码分配给了感兴趣的输入临床文档。我们使用医院出院摘要及其来自MIMIC-III数据库的相应ICD-9代码评估HILAT。为了研究不同类型的变压器模型的性能,我们开发了临床plusxlnet,该临床plusxlnet使用所有模拟物III临床注释从XLNET基础进行持续预处理。实验结果表明,HILAT+ClinicalPlusxlnet的F1得分优于Mimic-III的前50名最频繁的ICD-9代码的先前最新模型。注意力重量的可视化提出了一个潜在的解释性工具,用于检查ICD代码预测的面部有效性。
International Classification of Diseases (ICD) coding plays an important role in systematically classifying morbidity and mortality data. In this study, we propose a hierarchical label-wise attention Transformer model (HiLAT) for the explainable prediction of ICD codes from clinical documents. HiLAT firstly fine-tunes a pretrained Transformer model to represent the tokens of clinical documents. We subsequently employ a two-level hierarchical label-wise attention mechanism that creates label-specific document representations. These representations are in turn used by a feed-forward neural network to predict whether a specific ICD code is assigned to the input clinical document of interest. We evaluate HiLAT using hospital discharge summaries and their corresponding ICD-9 codes from the MIMIC-III database. To investigate the performance of different types of Transformer models, we develop ClinicalplusXLNet, which conducts continual pretraining from XLNet-Base using all the MIMIC-III clinical notes. The experiment results show that the F1 scores of the HiLAT+ClinicalplusXLNet outperform the previous state-of-the-art models for the top-50 most frequent ICD-9 codes from MIMIC-III. Visualisations of attention weights present a potential explainability tool for checking the face validity of ICD code predictions.