论文标题

贝叶斯时空建模针对反问题

Bayesian Spatiotemporal Modeling for Inverse Problems

论文作者

Lan, Shiwei, Li, Shuyi, Pasha, Mirjeta

论文摘要

时空观察的逆问题在科学研究和工程应用中无处不在。在这些时空逆问题中,观察到的多元时间序列用于推断物理或生物学利益的参数。这些问题的传统解决方案通常忽略数据中的空间或时间相关性(静态模型),或者简单地对数据汇总的数据(时间平均模型)进行建模。无论哪种情况,包含时空相互作用的数据信息都不完全用于参数学习,这导致​​这些问题的建模不足。在本文中,我们将基于时空高斯过程(STGP)的​​贝叶斯模型应用于时空数据的反问题,并表明空间和时间信息提供了更有效的参数估计和不确定性量化(UQ)。与传统的静态和时间平均方法相比,使用时间依赖性的对流扩散部分不同方程(PDE)和三个混乱的普通微分方程(ODE),我们证明了贝叶斯时空建模的优点。我们还为时空建模的优越性提供理论理由,以适应轨迹,即使它看起来很麻烦(例如,对于混乱的动力学)。

Inverse problems with spatiotemporal observations are ubiquitous in scientific studies and engineering applications. In these spatiotemporal inverse problems, observed multivariate time series are used to infer parameters of physical or biological interests. Traditional solutions for these problems often ignore the spatial or temporal correlations in the data (static model), or simply model the data summarized over time (time-averaged model). In either case, the data information that contains the spatiotemporal interactions is not fully utilized for parameter learning, which leads to insufficient modeling in these problems. In this paper, we apply Bayesian models based on spatiotemporal Gaussian processes (STGP) to the inverse problems with spatiotemporal data and show that the spatial and temporal information provides more effective parameter estimation and uncertainty quantification (UQ). We demonstrate the merit of Bayesian spatiotemporal modeling for inverse problems compared with traditional static and time-averaged approaches using a time-dependent advection-diffusion partial different equation (PDE) and three chaotic ordinary differential equations (ODE). We also provide theoretic justification for the superiority of spatiotemporal modeling to fit the trajectories even it appears cumbersome (e.g. for chaotic dynamics).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源