论文标题

估计平均治疗效果的双机器学习方法:比较研究

Double Machine Learning Methods for Estimating Average Treatment Effects: A Comparative Study

论文作者

Tan, Xiaoqing, Yang, Shu, Ye, Wenyu, Faries, Douglas E., Lipkovich, Ilya, Kadziola, Zbigniew

论文摘要

观察队列研究越来越多地用于比较有效性研究,以评估治疗剂的安全性。最近,已经提出了各种双重鲁棒方法来通过通过不同的车辆(例如匹配,加权和回归)结合治疗模型和结果模型来进行平均治疗效应估计。双重稳健估计器的主要优点是,它们需要正确指定治疗模型或结果模型,以获得平均治疗效果的一致估计器,因此导致更准确且通常更精确的推断。但是,几乎没有做过的工作来了解双重稳健的估计器如何使用治疗和结果模型的独特策略以及如何将机器学习技术组合起来以提高其性能,我们将其称为双重机器学习估计器。在这里,我们检查了多种受欢迎的双重鲁棒方法,并通过广泛的模拟和现实世界的应用使用不同的处理和结果建模来比较其性能。我们发现,将机器学习与双重强大的估计器(例如目标最大似然估计器)相结合,可以提供最佳的整体性能。提供了有关如何应用双重稳健估计器的实用指导。

Observational cohort studies are increasingly being used for comparative effectiveness research to assess the safety of therapeutics. Recently, various doubly robust methods have been proposed for average treatment effect estimation by combining the treatment model and the outcome model via different vehicles, such as matching, weighting, and regression. The key advantage of doubly robust estimators is that they require either the treatment model or the outcome model to be correctly specified to obtain a consistent estimator of average treatment effects, and therefore lead to a more accurate and often more precise inference. However, little work has been done to understand how doubly robust estimators differ due to their unique strategies of using the treatment and outcome models and how machine learning techniques can be combined to boost their performance, which we call double machine learning estimators. Here we examine multiple popular doubly robust methods and compare their performance using different treatment and outcome modeling via extensive simulations and a real-world application. We found that incorporating machine learning with doubly robust estimators such as the targeted maximum likelihood estimator gives the best overall performance. Practical guidance on how to apply doubly robust estimators is provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源