论文标题
使用条件随机森林优化具有成本效益的个性化治疗规则的有效方法
An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest
论文作者
论文摘要
观察性研究的证据对于通过成本效益(CE)分析支持医疗保健政策制定变得越来越重要。与比较有效性研究相似,考虑主题级异质性的健康经济评估产生个性化的治疗规则(ITR)通常比一定程度的所有治疗更具成本效益。因此,在因果推理框架下开发统计工具以学习这种具有成本效益的ITR(CE-ITR)是非常有趣的,该工具允许正确处理潜在的混杂,并可以应用于试验和观察性研究。在本文中,我们使用净含税效果(NMB)的概念来评估健康福利和相关成本之间的权衡。我们将CE-ITR估算为患者特征的函数,该特征在实施时,通过最大程度地提高健康增长,同时最大程度地减少与治疗相关的成本,从而优化了有限的医疗保健资源。我们采用有条件的随机森林方法,并使用基于NMB的分类算法确定最佳CE-ITR,其中提出了针对特定主体权重的两个分区估计量,以有效地合并来自审查的个体的信息。我们进行仿真研究以评估提案的绩效。我们将表现最佳的算法应用于NIH资助的收缩压干预试验(SPRINT),以说明分配定制的强化血压疗法的CE收益。
Evidence from observational studies has become increasingly important for supporting healthcare policy making via cost-effectiveness (CE) analyses. Similar as in comparative effectiveness studies, health economic evaluations that consider subject-level heterogeneity produce individualized treatment rules (ITRs) that are often more cost-effective than one-size-fits-all treatment. Thus, it is of great interest to develop statistical tools for learning such a cost-effective ITR (CE-ITR) under the causal inference framework that allows proper handling of potential confounding and can be applied to both trials and observational studies. In this paper, we use the concept of net-monetary-benefit (NMB) to assess the trade-off between health benefits and related costs. We estimate CE-ITR as a function of patients' characteristics that, when implemented, optimizes the allocation of limited healthcare resources by maximizing health gains while minimizing treatment-related costs. We employ the conditional random forest approach and identify the optimal CE-ITR using NMB-based classification algorithms, where two partitioned estimators are proposed for the subject-specific weights to effectively incorporate information from censored individuals. We conduct simulation studies to evaluate the performance of our proposals. We apply our top-performing algorithm to the NIH-funded Systolic Blood Pressure Intervention Trial (SPRINT) to illustrate the CE gains of assigning customized intensive blood pressure therapy.