论文标题
球形旋转维度降低通过几何损失函数
Spherical Rotation Dimension Reduction with Geometric Loss Functions
论文作者
论文摘要
现代数据集经常表现出很高的维度,但是数据却存在于低维流形中,这些歧管可以揭示潜在的几何结构,这对于数据分析至关重要。这样一个数据集的一个主要示例是细胞周期测量值的集合,其中该过程的固有周期性可以表示为圆或球体。由于需要分析这些类型的数据集的动机,我们提出了一种非线性尺寸降低方法,球形旋转成分分析(SRCA),该方法结合了几何信息,以更好地近似低维流形。 SRCA是一种多功能方法,旨在在高维和小样本尺寸设置中起作用。通过采用球体或椭圆形,SRCA提供了一般理论保证的数据的低排名球形表示,从而有效地保留了降低维度的几何结构。一项全面的仿真研究以及成功地应用了人类细胞周期数据,进一步强调了SRCA与最先进的替代方案相比的优势,这表明了其在近似歧管的同时保留固有的几何结构时表现出了出色的性能。
Modern datasets often exhibit high dimensionality, yet the data reside in low-dimensional manifolds that can reveal underlying geometric structures critical for data analysis. A prime example of such a dataset is a collection of cell cycle measurements, where the inherently cyclical nature of the process can be represented as a circle or sphere. Motivated by the need to analyze these types of datasets, we propose a nonlinear dimension reduction method, Spherical Rotation Component Analysis (SRCA), that incorporates geometric information to better approximate low-dimensional manifolds. SRCA is a versatile method designed to work in both high-dimensional and small sample size settings. By employing spheres or ellipsoids, SRCA provides a low-rank spherical representation of the data with general theoretic guarantees, effectively retaining the geometric structure of the dataset during dimensionality reduction. A comprehensive simulation study, along with a successful application to human cell cycle data, further highlights the advantages of SRCA compared to state-of-the-art alternatives, demonstrating its superior performance in approximating the manifold while preserving inherent geometric structures.