论文标题
在5G mmwave网络中,深度强化学习基于学习的无线电资源分配和光束管理不确定性
Deep Reinforcement Learning-based Radio Resource Allocation and Beam Management under Location Uncertainty in 5G mmWave Networks
论文作者
论文摘要
毫米波(MMWave)是5G新无线电(NR)的重要组成部分,其中高方向梁被调整以补偿基于UE位置的实质传播损失。但是,位置信息可能会有一些错误,例如GPS错误。无论如何,在大多数设置中,不可避免的是某些不确定性和本地化错误。应用这些扭曲的位置进行聚类将增加光束管理的误差。同时,在无线环境中,交通需求可能会动态变化。因此,需要处理本地化不确定性和动态无线电资源分配的方案。在本文中,我们建议在5G mmwave网络中用于基于英国均值的集群和基于深入的基于增强学习的资源分配算法(UK-DRL),以用于无线电资源分配和光束管理。我们首先将英国平均值作为聚类算法来减轻本地化不确定性,然后采用深度加固学习(DRL)来动态分配无线电资源。最后,我们将UK-DRL与基于K-Means的集群和基于DRL的资源分配算法(K-DRL)进行了比较,模拟表明,当交通负荷为4Mbps时,我们提出的基于UK-DRL的方法与K-DRL相比,与K-DRL相比,吞吐量达到150%,延迟降低了61.5%。
Millimeter Wave (mmWave) is an important part of 5G new radio (NR), in which highly directional beams are adapted to compensate for the substantial propagation loss based on UE locations. However, the location information may have some errors such as GPS errors. In any case, some uncertainty, and localization error is unavoidable in most settings. Applying these distorted locations for clustering will increase the error of beam management. Meanwhile, the traffic demand may change dynamically in the wireless environment. Therefore, a scheme that can handle both the uncertainty of localization and dynamic radio resource allocation is needed. In this paper, we propose a UK-means-based clustering and deep reinforcement learning-based resource allocation algorithm (UK-DRL) for radio resource allocation and beam management in 5G mmWave networks. We first apply UK-means as the clustering algorithm to mitigate the localization uncertainty, then deep reinforcement learning (DRL) is adopted to dynamically allocate radio resources. Finally, we compare the UK-DRL with K-means-based clustering and DRL-based resource allocation algorithm (K-DRL), the simulations show that our proposed UK-DRL-based method achieves 150% higher throughput and 61.5% lower delay compared with K-DRL when traffic load is 4Mbps.