论文标题
对话意味着以任务为导向的对话系统的表示形式
Dialogue Meaning Representation for Task-Oriented Dialogue Systems
论文作者
论文摘要
对话含义表示在其会话环境中以明确和机器可读的形式在其会话上下文中提出了自然语言语义。先前的工作通常遵循意图插槽框架,这很容易注释,但对复杂语言表达式的可扩展性有限。一系列作品通过引入层次结构来减轻表示问题,但要表达复杂的作曲语义(例如否定和核心)的挑战。我们提出对话含义表示(DMR),这是一种面向任务的对话的柔软且易于扩展的表示形式。我们的表示包含一组节点和边缘,以代表丰富的组成语义。此外,我们提出了一种关注域扩展性的继承层次结构机制。此外,我们注释了DMR-FastFood,这是一种具有超过70k个话语的多转向对话数据集,并带有DMR。我们提出了两个评估任务,以评估不同的对话模型和一个新颖的核心分辨率模型GNNCoref,以用于基于图的核心分辨率任务。实验表明,DMR可以通过预先训练的SEQ2SEQ模型很好地解析,而Gncoref的表现要优于基线模型,较大的边距。
Dialogue meaning representation formulates natural language utterance semantics in their conversational context in an explicit and machine-readable form. Previous work typically follows the intent-slot framework, which is easy for annotation yet limited in scalability for complex linguistic expressions. A line of works alleviates the representation issue by introducing hierarchical structures but challenging to express complex compositional semantics, such as negation and coreference. We propose Dialogue Meaning Representation (DMR), a pliable and easily extendable representation for task-oriented dialogue. Our representation contains a set of nodes and edges to represent rich compositional semantics. Moreover, we propose an inheritance hierarchy mechanism focusing on domain extensibility. Additionally, we annotated DMR-FastFood, a multi-turn dialogue dataset with more than 70k utterances, with DMR. We propose two evaluation tasks to evaluate different dialogue models and a novel coreference resolution model GNNCoref for the graph-based coreference resolution task. Experiments show that DMR can be parsed well with pre-trained Seq2Seq models, and GNNCoref outperforms the baseline models by a large margin.