论文标题

通过成对比较鲁棒语义分割的学习形状先验

Learning Shape Priors by Pairwise Comparison for Robust Semantic Segmentation

论文作者

Xie, Cong, Liu, Hualuo, Cao, Shilei, Wei, Dong, Ma, Kai, Wang, Liansheng, Zheng, Yefeng

论文摘要

语义细分在医学图像分析中很重要。受传统图像分析技术在捕获形状先验和受试者间相似性方面的强大能力的启发,最近已经提出了许多深度学习(DL)模型来利用此类先前的信息并实现了强大的性能。但是,通常在现有模型中分别研究这两种重要的先验信息。在本文中,我们提出了一种新型的DL模型,以在单个框架内对两种类型的先验进行建模。具体而言,我们将额外的编码器引入经典编码器二次结构中,以形成编码器的暹罗结构,其中一个以目标图像为输入(图像编码器),另一个将模板图像及其前景区域串联成输入(模板编码器)。模板编码器编码模板图像中每个前景类的形状先验和外观特征。提出了基于余弦相似性的注意模块,以融合两个编码器的信息,以利用由模板编码器编码的两种类型的先前信息,并模拟每个前景类别的对象间相似性。在两个公共数据集上进行的广泛实验表明,我们提出的方法可以使竞争方法具有出色的性能。

Semantic segmentation is important in medical image analysis. Inspired by the strong ability of traditional image analysis techniques in capturing shape priors and inter-subject similarity, many deep learning (DL) models have been recently proposed to exploit such prior information and achieved robust performance. However, these two types of important prior information are usually studied separately in existing models. In this paper, we propose a novel DL model to model both type of priors within a single framework. Specifically, we introduce an extra encoder into the classic encoder-decoder structure to form a Siamese structure for the encoders, where one of them takes a target image as input (the image-encoder), and the other concatenates a template image and its foreground regions as input (the template-encoder). The template-encoder encodes the shape priors and appearance characteristics of each foreground class in the template image. A cosine similarity based attention module is proposed to fuse the information from both encoders, to utilize both types of prior information encoded by the template-encoder and model the inter-subject similarity for each foreground class. Extensive experiments on two public datasets demonstrate that our proposed method can produce superior performance to competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源