论文标题
KMT-2021-BLG-1898:二进制源星涉及的行星微透明事件
KMT-2021-BLG-1898: Planetary microlensing event involved with binary source stars
论文作者
论文摘要
微透镜事件的光曲线KMT-2021-BLG-1898表现出短期的中央异常,具有双重凹凸特征,通常通过通常的二进制镜头或二进制源解释来解释。为了解释异常,我们在各种复杂模型下分析了镜头光曲线。我们发现异常是由模型解释的,其中镜头和源都是二进制文件(2L2S模型)。对于这种解释,镜头是一个行星系统,其行星/宿主质量比为$ q \ sim 1.5 \ times 10^{ - 3} $,源是由关闭或子巨星和中部k dwarf组成的二进制。异常的双重凸起特征也可以通过三镜模型(3L1S模型)来描绘,其中镜头是一个包含两个行星的行星系统。在这两种解释中,2L2S模型比3L1S模型不仅偏爱数据,这不仅是因为它可以更好地拟合数据,因此$Δχ^2 = [14.3 $ - 18.5],而且也从二进制源的两个恒星中独立得出的Einstein Radii衍生而成。根据2L2S的解释,KMT-2021-BLG-1898是在MOA-2010-BLG-117和KMT-2018-BLG-1743之后发生在二元恒星系统上的第三个行星镜头事件。在2L2S的解释下,我们在确定行星宿主分离时识别出两种溶液。从贝叶斯分析中,我们估计该星球的质量为$ \ sim 0.7 $ - 0.8〜 $ m _ {\ rm j} $,并且它绕了一个早期的M矮人主机,质量为$ \ sim 0.5〜m_ \ odot $。根据近距离和广泛的解决方案,投影的行星主机间隔为$ \ sim 1.9 $ 〜AU和$ \ sim 3.0 $ 〜AU。
The light curve of the microlensing event KMT-2021-BLG-1898 exhibits a short-term central anomaly with double-bump features that cannot be explained by the usual binary-lens or binary-source interpretations. With the aim of interpreting the anomaly, we analyze the lensing light curve under various sophisticated models. We find that the anomaly is explained by a model, in which both the lens and source are binaries (2L2S model). For this interpretation, the lens is a planetary system with a planet/host mass ratio of $q\sim 1.5\times 10^{-3}$, and the source is a binary composed of a turn off or a subgiant star and a mid K dwarf. The double-bump feature of the anomaly can also be depicted by a triple-lens model (3L1S model), in which the lens is a planetary system containing two planets. Among the two interpretations, the 2L2S model is favored over the 3L1S model not only because it yields a better fit to the data, by $Δχ^2=[14.3$--18.5], but also the Einstein radii derived independently from the two stars of the binary source result in consistent values. According to the 2L2S interpretation, KMT-2021-BLG-1898 is the third planetary lensing event occurring on a binary stellar system, following MOA-2010-BLG-117 and KMT-2018-BLG-1743. Under the 2L2S interpretation, we identify two solutions resulting from the close-wide degeneracy in determining the planet-host separation. From a Bayesian analysis, we estimate that the planet has a mass of $\sim 0.7$--0.8~$M_{\rm J}$, and it orbits an early M dwarf host with a mass of $\sim 0.5~M_\odot$. The projected planet-host separation is $\sim 1.9$~AU and $\sim 3.0$~AU according to the close and wide solutions, respectively.