论文标题

Neumann特征值的最大化

Maximization of Neumann eigenvalues

论文作者

Bucur, Dorin, Martinet, Eloi, Oudet, Edouard

论文摘要

本文是由$ {\ Mathbb r}^n $的neumann边界条件的$ k $ th特征值的最大化,并具有规定的度量。我们将(可能是退化)密度(\ Mathbb r}^n $带有规定的质量的(可能是退化)密度的类别的问题,并证明存在最佳密度。对于$ k = 1,2 $,这两个问题是等效的,最大化器分别是一个和两个相等的球。对于$ k \ ge 3 $,此问题仍然打开,除了在空间的一个维度上,我们证明最大密度对应于$ k $相等的段的结合。该结果为Sturm-Liouville特征值提供了尖锐的上限,并证明了Pólya猜想在$ {\ Mathbb r} $中的密度类别中的有效性。基于放松的公式,我们提供了$ k = 1,\ dots,$ {\ mathbb r}^2 $的最佳密度的数值近似值。

This paper is motivated by the maximization of the $k$-th eigenvalue of the Laplace operator with Neumann boundary conditions among domains of ${\mathbb R}^N$ with prescribed measure. We relax the problem to the class of (possibly degenerate) densities in ${\mathbb R}^N$ with prescribed mass and prove the existence of an optimal density. For $k=1,2$ the two problems are equivalent and the maximizers are known to be one and two equal balls, respectively. For $k \ge 3$ this question remains open, except in one dimension of the space where we prove that the maximal densities correspond to a union of $k$ equal segments. This result provides sharp upper bounds for Sturm-Liouville eigenvalues and proves the validity of the Pólya conjecture in the class of densities in ${\mathbb R}$. Based on the relaxed formulation, we provide numerical approximations of optimal densities for $k=1, \dots, 8$ in ${\mathbb R}^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源