论文标题

Vita:一种多源典型转移扩增方法,用于分布概括

VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization

论文作者

Chen, Minghui, Wen, Cheng, Zheng, Feng, He, Fengxiang, Shao, Ling

论文摘要

对各种类型的图像损坏(例如噪声,模糊或颜色转移)的不变性对于在计算机视觉中建立强大的模型至关重要。数据增强一直是改善对共同腐败的鲁棒性的主要方法。但是,流行的增强策略生产的样品显着偏离了基本数据歧管。结果,性能偏向某些类型的腐败。为了解决这个问题,我们提出了一种多源综合传输增强(VITA)方法,用于生成多样化的盛大样品。所提出的Vita由两个互补部分组成:多源综合样品的切线转移和整合。切线转移创建了最初的增强样品,以改善腐败鲁棒性。该集成采用生成模型来表征由阴性样品构建的基本歧管,从而促进了跨媒体样品的产生。我们提出的VITA极大地胜过当前最新的增强方法,在有关腐败基准的广泛实验中证明了这一点。

Invariance to diverse types of image corruption, such as noise, blurring, or colour shifts, is essential to establish robust models in computer vision. Data augmentation has been the major approach in improving the robustness against common corruptions. However, the samples produced by popular augmentation strategies deviate significantly from the underlying data manifold. As a result, performance is skewed toward certain types of corruption. To address this issue, we propose a multi-source vicinal transfer augmentation (VITA) method for generating diverse on-manifold samples. The proposed VITA consists of two complementary parts: tangent transfer and integration of multi-source vicinal samples. The tangent transfer creates initial augmented samples for improving corruption robustness. The integration employs a generative model to characterize the underlying manifold built by vicinal samples, facilitating the generation of on-manifold samples. Our proposed VITA significantly outperforms the current state-of-the-art augmentation methods, demonstrated in extensive experiments on corruption benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源