论文标题

顺序推荐的确定点过程可能性

Determinantal Point Process Likelihoods for Sequential Recommendation

论文作者

Liu, Yuli, Walder, Christian, Xie, Lexing

论文摘要

顺序推荐是学术研究中的一项流行任务,并且接近现实世界的应用程序方案,其目标是根据他/她以前的动作顺序预测用户的下一个动作。在推荐系统的培训过程中,损失功能在指导建议模型的优化以为用户提供准确建议方面起着至关重要的作用。但是,大多数现有的顺序推荐技术都集中在设计算法或神经网络体系结构上,并且很少努力量身定制自然而然地适合顺序推荐系统实用应用方案的损失功能。 基于排名的损失,例如跨透明拷贝和贝叶斯个性化排名(BPR),在顺序推荐区域被广泛使用。我们认为,这种目标功能具有两个固有的缺点:i)在这些损失公式中忽略了序列元素之间的依赖性; ii)而不是平衡准确性(质量)和多样性,而是过度强调了准确的结果。因此,我们根据确定点过程(DPP)的可能性提出了两个新的损失函数,可以自适应地应用于估计后续项目或项目。 DPP分布式项目集捕获了时间动作之间的自然依赖性,而DPP内核的质量与多样性分解促使我们超越了面向准确的损失功能。使用三个现实世界数据集上提出的损失函数的实验结果表明,在质量和多样性指标上的最先进的顺序推荐方法上,有明显的改善。

Sequential recommendation is a popular task in academic research and close to real-world application scenarios, where the goal is to predict the next action(s) of the user based on his/her previous sequence of actions. In the training process of recommender systems, the loss function plays an essential role in guiding the optimization of recommendation models to generate accurate suggestions for users. However, most existing sequential recommendation techniques focus on designing algorithms or neural network architectures, and few efforts have been made to tailor loss functions that fit naturally into the practical application scenario of sequential recommender systems. Ranking-based losses, such as cross-entropy and Bayesian Personalized Ranking (BPR) are widely used in the sequential recommendation area. We argue that such objective functions suffer from two inherent drawbacks: i) the dependencies among elements of a sequence are overlooked in these loss formulations; ii) instead of balancing accuracy (quality) and diversity, only generating accurate results has been over emphasized. We therefore propose two new loss functions based on the Determinantal Point Process (DPP) likelihood, that can be adaptively applied to estimate the subsequent item or items. The DPP-distributed item set captures natural dependencies among temporal actions, and a quality vs. diversity decomposition of the DPP kernel pushes us to go beyond accuracy-oriented loss functions. Experimental results using the proposed loss functions on three real-world datasets show marked improvements over state-of-the-art sequential recommendation methods in both quality and diversity metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源