论文标题

基于RIS的车辆DOA估计方法,具有集成感应和通信系统

A RIS-Based Vehicle DOA Estimation Method With Integrated Sensing and Communication System

论文作者

Chen, Zhimin, Chen, Peng, Guo, Ziyu, Zhang, Yudong, Wang, Xianbin

论文摘要

随着智能运输的发展,人们越来越关注集成感应和通信(ISAC)系统。在本文中,我们制定了一种新型的被动感应技术,以使用可重构智能表面(RIS)获得有关车辆到达方向(DOA)的信息。在场景中提出了一种新型的估计方法,仅使用一个完整功能通道,其中接收器的多个测量值是通过控制RIS中的反射矩阵(测量矩阵)来实现的多个DOA估计方法。此外,与现有的估计方法不同,我们还考虑了ISAC系统中无线通信引入的干扰信号。然后,我们提出了一种新型基于原子规范的方法,以去除干扰信号并重建稀疏信号。此外,一种基于汉克尔的新型多重信号分类(音乐)方法是制定的,以在干扰删除后获取DOA信息。为了更有效地降低干扰信号并改善稀疏重建的性能,我们优化了测量矩阵以提高信噪比与互助 - 噪声比率(SINR)。最后,理论上的cram'{e} r-raO下限(CRLB)是在媒介DOA估计上的ISAC系统得出的。仿真结果表明,所提出的方法可以在DOA估计中实现更好的性能,并且显示了具有不同传感节点分布的相应CRLB。该方法的代码可在线获得https://github.com/chenpengseu/passivedoa-isac-ris.git。

With the development of intelligent transportation, growing attention has been received to integrated sensing and communication (ISAC) systems. In this paper, we formulate a novel passive sensing technique to obtain information on the vehicle's direction of arrival (DOA) using reconfigurable intelligent surfaces (RIS). A novel estimation method is proposed in the scenario with a receiver using only one full-functional channel, where multiple measurements for the DOA estimation are achieved by controlling the reflection matrix (measurement matrix) in the RIS. Moreover, different from the existing estimation methods, we also consider the interference signals introduced by wireless communication in the ISAC system. Then, we propose a novel atomic norm-based method to remove the interference signals and reconstruct the sparse signal. Additionally, a novel Hankel-based multiple signal classification (MUSIC) method is formulated to obtain the DOA information after the interference removal. To reduce the interference signals more efficiently and improve the performance of the sparse reconstruction, we optimize the measurement matrix to improve the signal-to-interference-plus-noise ratio (SINR). Finally, the theoretical Cram'{e}r-Rao lower bound (CRLB) is derived for the ISAC system on the vehicle DOA estimation. Simulation results show that the proposed method can achieve better performance in the DOA estimation, and the corresponding CRLB with different distributions of the sensing nodes are shown. The code for the proposed method is available online https://github.com/chenpengseu/PassiveDOA-ISAC-RIS.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源