论文标题

监督渐进域适应的算法和理论

Algorithms and Theory for Supervised Gradual Domain Adaptation

论文作者

Dong, Jing, Zhou, Shiji, Wang, Baoxiang, Zhao, Han

论文摘要

随着时间的流逝,数据分布的现象已经在一系列应用中观察到,称为自适应学习算法的需求。因此,我们研究了监督的渐进域适应性问题,在该问题中,从轨迹沿着轨迹的学习者可以使用转移分布的标记数据,我们旨在学习有关目标数据分布的分类器。在这种情况下,我们在轻度假设下的学习误差上提供了第一个概括上限。我们的结果是算法不可知论,对于一系列损失函数,只有线性取决于整个轨迹的平均学习误差。与无监督的渐进域适应的先前上限相比,这显示出显着的改善,在该渐变域适应中,目标域上的学习误差指数取决于源域上的初始误差。与从多个领域学习的离线设置相比,我们的结果还表明,不同域之间时间结构在适应目标方面的潜在益处。从经验上讲,我们的理论结果表明,在整个领域的学习适当表示会有效地减轻学习错误。在这些理论见解的推动下,我们提出了一个最小的最大学习目标,以同时学习表示和分类器。半合成和大规模实际数据集的实验结果证实了我们的发现,并证明了我们的目标的有效性。

The phenomenon of data distribution evolving over time has been observed in a range of applications, calling the needs of adaptive learning algorithms. We thus study the problem of supervised gradual domain adaptation, where labeled data from shifting distributions are available to the learner along the trajectory, and we aim to learn a classifier on a target data distribution of interest. Under this setting, we provide the first generalization upper bound on the learning error under mild assumptions. Our results are algorithm agnostic, general for a range of loss functions, and only depend linearly on the averaged learning error across the trajectory. This shows significant improvement compared to the previous upper bound for unsupervised gradual domain adaptation, where the learning error on the target domain depends exponentially on the initial error on the source domain. Compared with the offline setting of learning from multiple domains, our results also suggest the potential benefits of the temporal structure among different domains in adapting to the target one. Empirically, our theoretical results imply that learning proper representations across the domains will effectively mitigate the learning errors. Motivated by these theoretical insights, we propose a min-max learning objective to learn the representation and classifier simultaneously. Experimental results on both semi-synthetic and large-scale real datasets corroborate our findings and demonstrate the effectiveness of our objectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源