论文标题

多项式时间问题的近似性的结构研究

A Structural Investigation of the Approximability of Polynomial-Time Problems

论文作者

Bringmann, Karl, Cassis, Alejandro, Fischer, Nick, Künnemann, Marvin

论文摘要

我们启动了最近引入的MAXSNP多项式类似物的系统研究,其中包括大量研究的问题(包括锤式度量,最大内部产品,最大和最远的邻居,最大的内部产品,$ K $ -XOR的优化变体和最大$ k $ -cover)。具体而言,maxsp $ _k $表示$ o(m^k)$的类 - $ \ max_ {x_1,\ dots,x_k} \ x_k} \ w {n:ϕ(x_1,\ dots,x_1,x_k,x_k,x_k,x_k,x_k,y)\} $ where $ deDEDEDEDERIFER first prorder promeral and $ $ $ $ m的时间问题。假设在HyperGraphs和Max3Sat中进行集团检测的中心假设,我们表明,对于任何MaxSp $ _K $问题,可以通过无量词的$ M $ M $ -EDGE Graph Graph formula $ ϕ $定义,这是更快的exexhan-exexexeardive-search time $ o(m^{k-δ} $ falls of的最佳近似保证 *可以优化到时间$ o(m^{k-δ})$, *一个(效率低下的)近似方案,即$(1+ε)$ - 时间$ o(m^{k-f(ε)})$, * a(固定的)恒定因子近似时间$ o(m^{k-δ})$或 * $ m^ε$ -Approximation in Time $ o(m^{k-f(ε)})$。 对于MaxSp $ _K $以及类似定义的最小化类Minsp $ _K $,我们几乎完全表征了这些制度。作为我们的主要技术贡献,我们排除了在稀疏的Max3SAT假设下的近似问题的近似方案(Alman,Vassilevska Williams'20)。作为我们考虑的问题的一般趋势,我们发现:(1)精确的优化性具有简单的代数表征,(2)只有少数最大化问题不接受恒定的因子近似;这些甚至没有类别的因子近似,(3)最小化问题的恒定因子近似等同于确定最佳是否等于0。

We initiate the systematic study of a recently introduced polynomial-time analogue of MaxSNP, which includes a large number of well-studied problems (including Nearest and Furthest Neighbor in the Hamming metric, Maximum Inner Product, optimization variants of $k$-XOR and Maximum $k$-Cover). Specifically, MaxSP$_k$ denotes the class of $O(m^k)$-time problems of the form $\max_{x_1,\dots, x_k} \#\{y:ϕ(x_1,\dots,x_k,y)\}$ where $ϕ$ is a quantifier-free first-order property and $m$ denotes the size of the relational structure. Assuming central hypotheses about clique detection in hypergraphs and MAX3SAT, we show that for any MaxSP$_k$ problem definable by a quantifier-free $m$-edge graph formula $ϕ$, the best possible approximation guarantee in faster-than-exhaustive-search time $O(m^{k-δ})$ falls into one of four categories: * optimizable to exactness in time $O(m^{k-δ})$, * an (inefficient) approximation scheme, i.e., a $(1+ε)$-approximation in time $O(m^{k-f(ε)})$, * a (fixed) constant-factor approximation in time $O(m^{k-δ})$, or * an $m^ε$-approximation in time $O(m^{k-f(ε)})$. We obtain an almost complete characterization of these regimes, for MaxSP$_k$ as well as for an analogously defined minimization class MinSP$_k$. As our main technical contribution, we rule out approximation schemes for a large class of problems admitting constant-factor approximations, under the Sparse MAX3SAT hypothesis posed by (Alman, Vassilevska Williams'20). As general trends for the problems we consider, we find: (1) Exact optimizability has a simple algebraic characterization, (2) only few maximization problems do not admit a constant-factor approximation; these do not even have a subpolynomial-factor approximation, and (3) constant-factor approximation of minimization problems is equivalent to deciding whether the optimum is equal to 0.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源