论文标题
LightDefectnet:高度紧凑的深层抗恶意注意冷凝器神经网络结构,用于光导向板表面缺陷检测
LightDefectNet: A Highly Compact Deep Anti-Aliased Attention Condenser Neural Network Architecture for Light Guide Plate Surface Defect Detection
论文作者
论文摘要
光导板是基本的光学组件,广泛用于从医疗照明灯具到背光电视显示的各种应用中。制造光导板的重要一步是对缺陷,例如划痕,明亮/深色斑点和杂质等缺陷进行质量检查。这主要是通过手动视觉检查板模式不规则的,这是在行业中完成的,这是耗时且容易发生人为错误的,因此是高通量产生的重要障碍。深度学习驱动的计算机视觉的进步导致探索了自动化的视觉质量检查光导板,以提高检查的一致性,准确性和效率。但是,鉴于视觉检查方案的成本限制,由于高度计算要求,用于检查灯导向板的深度学习驱动的计算机视觉方法的广泛采用受到了极大的限制。在这项研究中,我们探索了使用计算和“最佳实践”约束的机器驱动设计探索的利用,以及L $ _1 $ _1 $配对的分类差异损失,以创建LightDefectNet,这是一种高度紧凑的深度反抗化性凝聚力凝聚器神经网络建筑,专门针对光线板表面缺陷,用于在资源控制场景中量身定制的,专门针对光线板表面缺陷。实验表明,LightDetectNet在LGPSDD基准上达到了$ \ sim $ 98.2%的检测准确性,而只有770k参数($ \ sim $ 33 $ \ times $ \ sim $ \ sim $ 6.9 $ 6.9 $ \ $ 6.9 $ \ $ $ $ $均低于Resnet-50和$ 93M SIMS(分别为$ 93M SIMS)和$ \ sim $ 8.4 $ \ times $ $ $ $比Resnet-50和EdgitionNet-b0分别低于Resnet-50)和$ \ sim $ 8.8 $ \ times $ $ $ \ times $比在嵌入式ARM处理器上的效率网络b0快。
Light guide plates are essential optical components widely used in a diverse range of applications ranging from medical lighting fixtures to back-lit TV displays. An essential step in the manufacturing of light guide plates is the quality inspection of defects such as scratches, bright/dark spots, and impurities. This is mainly done in industry through manual visual inspection for plate pattern irregularities, which is time-consuming and prone to human error and thus act as a significant barrier to high-throughput production. Advances in deep learning-driven computer vision has led to the exploration of automated visual quality inspection of light guide plates to improve inspection consistency, accuracy, and efficiency. However, given the cost constraints in visual inspection scenarios, the widespread adoption of deep learning-driven computer vision methods for inspecting light guide plates has been greatly limited due to high computational requirements. In this study, we explore the utilization of machine-driven design exploration with computational and "best-practices" constraints as well as L$_1$ paired classification discrepancy loss to create LightDefectNet, a highly compact deep anti-aliased attention condenser neural network architecture tailored specifically for light guide plate surface defect detection in resource-constrained scenarios. Experiments show that LightDetectNet achieves a detection accuracy of $\sim$98.2% on the LGPSDD benchmark while having just 770K parameters ($\sim$33$\times$ and $\sim$6.9$\times$ lower than ResNet-50 and EfficientNet-B0, respectively) and $\sim$93M FLOPs ($\sim$88$\times$ and $\sim$8.4$\times$ lower than ResNet-50 and EfficientNet-B0, respectively) and $\sim$8.8$\times$ faster inference speed than EfficientNet-B0 on an embedded ARM processor.