论文标题

CFT中的角度量化

Angular Quantization in CFT

论文作者

Agia, Nicholas, Jafferis, Daniel L.

论文摘要

研究共形场理论的最常见的量化方案是径向量化,其中在一个球体上定义了希尔伯特的状态空间,其映射到平面时的哈密顿量是扩张发生器,并且具有州/操作员的对应关系。在本文中,我们考虑了2D CFTS的替代量化方案,在该方案中,该平面是由恒定角度切片叶状的,而不是同心圆,而同心圆的哈密顿是旋转发生器。在此角量化中,没有状态/操作员对应关系,而是“渐近/操作员对应”。一个中心特征是量化切片在两个操作员上结束,并且必须通过在每个操作员周围切开孔并施加适当的边界条件来选择调节器,以使所需的本地操作员收缩。该角度量化可以看作是在Minkowski空间中构建CFT,也可以分别视为研究CFT中的非统一(但局部)边界条件。我们为各种免费2D CFT提供明确的Fock空间构建体。除了在传统的径向量化不足的字符串理论情况下应用角度量化的动机外,我们还评论了它与模块化的哈密顿式方法的关系。

The most common quantization scheme in which to study a conformal field theory is radial quantization, wherein a Hilbert space of states is defined on a sphere, whose Hamiltonian when mapped to the plane is the dilatation generator and which boasts a state/operator correspondence. In this paper, we consider an alternative quantization scheme for 2d CFTs in which the plane is foliated by constant-angle slices, as opposed to concentric circles, whose Hamiltonian is the rotation generator. In this angular quantization, there is no state/operator correspondence but instead an "asymptotics/operator correspondence". A central feature is that the quantization slice ends on two operators, and a regulator must be chosen by excising holes around each operator and imposing suitable boundary conditions such that the holes shrink to the desired local operators. This angular quantization may be viewed as constructing CFTs in Minkowski space, or separately as studying non-conformal (but local) boundary conditions in CFTs. We provide explicit Fock space constructions for various free 2d CFTs. In addition to the motivation of applying angular quantization in string theory situations where traditional radial quantization is insufficient, we comment on its relation to modular Hamiltonian approaches to entanglement entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源