论文标题

vadis,光网架构?朝着基于光学处理的范式

Quo Vadis, Optical Network Architecture? Towards an Optical-processing-enabled Paradigm

论文作者

Hai, Dao Thanh

论文摘要

在光网架构中的各个方面中,处理中间节点的过境流量代表了分类的定义特征。在这种情况下,从第一代光学光学(O-E-O)模式转变为第二代光学bypass,标志着重新设计光学传输网络朝着更大的网络效率的范式转移。然后在过去的二十年中,大多数载体在地铁和骨干网络中采用了\ textit {de exto}方法,然后基本上保持不变。然而,在光学bypass网络中,必须在时间,频率或空间结构域中分离横穿公共中间节点的透射式光线路径,以避免对抗性干扰似乎是一个至关重要的缺点,因为此类光路在光学领域中的相互作用可能会导致有效的计算和/或信号处理过程,以节省光谱。受到光信号处理技术的加速进展和计算和通信的集成的启发,我们在本文中引入了一种新的建筑范式,以供未来的光网络,并突出显示这种新体系结构如何破坏\ textit {status of status quo}。的确,我们的建议集中在中间节点上透射式Lightpath的叠加以生成更有效的LightPath,以及如何从网络设计的角度利用这一机会。我们提出了两个案例研究,其中包括光学聚合和光学XOR编码,以证明具有光学加工的操作的优点与其对应的光学 - 型 - 型 - bypass相比。提供了现实的网络类型的数值结果,这表明由于采用了光学处理网络,可节省高达$ 30 \%$的光谱。

Among various aspects in optical network architectures, handling transit traffic at intermediate nodes represents a defining characteristic for classification. In this context, the transition from the first generation of optical-electrical-optical (O-E-O) mode to the second generation of optical-bypass marked a paradigm shift in redesigning optical transport networks towards greater network efficiency. Optical-bypass operation has then become the \textit{de facto} approach adopted by the majority of carriers in both metro and backbone networks in the last two decades and has remained basically unchanged. However, in optical-bypass network, the fact that in-transit lightpaths crossing a common intermediate node must be separated in either time, frequency or spatial domain to avoid adversarial interference appears to be a critical shortcoming as the interaction of such lightpaths in optical domain may result in efficient computing and/or signal processing operations for saving spectral resources. Inspired by the accelerated progresses in optical signal processing technologies and the integration of computing and communications, we introduce in this paper a new architectural paradigm for future optical networks and highlight how this new architecture has the potential to shatter the \textit{status quo}. Indeed, our proposal is centered on exploiting the superposition of in-transit lightpaths at intermediate nodes to generate more spectrally efficient lightpaths and how to harness this opportunity from network design perspectives. We present two case studies featuring optical aggregation and optical XOR encoding to demonstrate the merit of optical-processing-enabled operation compared to its counterpart, optical-bypass. Numerical results on realistic network typologies are provided, revealing that a spectral saving up to $30\%$ could be achieved thanks to adopting optical-processing network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源